Chambert-Loir, Antoine (1971-.... ; mathématicien)
Écrit aussi en anglais
Mathématicien. En poste à l'IRMAR, Université de Rennes 1 (en 2005). Professeur en poste à l'université Paris-Diderot (Paris 7), UFR de mathématiques, Institut de mathématiques de Jussieu—Paris Rive Gauche (équipe de topologie et géométrie algébriques), Paris, France en 2018
- Mathématiques
- Grenoble
- Arakelov Geometry and diophantine applications
- eem2017
- Géométrie d'Arakelov et applications diophantiennes
- equidistribution theorems
- Arakelov geometry
- Bogomolov conjecture
- Grenoble
- Arakelov Geometry and diophantine applications
- eem2017
- Géométrie d'Arakelov et applications diophantiennes
- equidistribution theorems
- Arakelov geometry
- Bogomolov conjecture
Vidéos
A. Chambert-Loir - Equidistribution theorems in Arakelov geometry and Bogomolov conjecture (part3)
Let X be an algebraic curve of genus g⩾2 embedded in its Jacobian variety J. The Manin-Mumford conjecture (proved by Raynaud) asserts that X contains only finitely many points of finite order.
A. Chambert-Loir - Equidistribution theorems in Arakelov geometry and Bogomolov conjecture (part4)
Let X be an algebraic curve of genus g⩾2 embedded in its Jacobian variety J. The Manin-Mumford conjecture (proved by Raynaud) asserts that X contains only finitely many points of finite order.
A. Chambert-Loir - Equidistribution theorems in Arakelov geometry and Bogomolov conjecture (part1)
Let X be an algebraic curve of genus g⩾2 embedded in its Jacobian variety J. The Manin-Mumford conjecture (proved by Raynaud) asserts that X contains only finitely many points of finite order.
A. Chambert-Loir - Equidistribution theorems in Arakelov geometry and Bogomolov conjecture (part2)
Let X be an algebraic curve of genus g⩾2 embedded in its Jacobian variety J. The Manin-Mumford conjecture (proved by Raynaud) asserts that X contains only finitely many points of finite order.