Conférence
Notice
Lieu de réalisation
En ligne
Langue :
Anglais
Crédits
Andreas Klöckner (Intervention)
Conditions d'utilisation
Droit commun de la propriété intellectuelle
Citer cette ressource :
Andreas Klöckner. GroupeCalcul. (2022, 16 novembre). HPC for Idealists with Deadlines: Pragmatic Abstractions for High Performance , in Webinaires Accélérateurs Python. [Vidéo]. Canal-U. https://www.canal-u.tv/134910. (Consultée le 10 novembre 2024)

HPC for Idealists with Deadlines: Pragmatic Abstractions for High Performance

Réalisation : 16 novembre 2022 - Mise en ligne : 19 novembre 2022
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

Development of high performance code often necessitates compromise. Lowered computational cost comes at the expense of other worthy goals, including intelligibility and maintainability of programs. We discuss a "ladder" of tools ranging from low- to high-level, aiming to reduce these sacrifices in machine independence, readability, and separation of concerns, all while enabling "near-handwritten" performance to be attained. These tools include PyOpenCL, offering access to the OpenCL compute abstraction and open-source implementations thereof, including pocl. They include loopy, a polyhedrally-based code transformation tool for CPU and GPU code. And they include pytato, which captures data flow graphs of numpy-compatible array computations for transformation and processing via loopy. Moderate-to-large-scale examples illustrate successful uses of these tools.

Intervention
Thème

Dans la même collection