Journée Sous-Riemannienne 2018
Conférence
D. Prandri - Weyl law for singular Riemannian manifolds
In this talk we present recent results on the asymptotic growth of eigenvalues of the Laplace-Beltrami operator on singular Riemannian manifolds, where all geometrical invariants appearing in
G. Molino - The Horizontal Einstein Property for H-Type sub-Riemannian Manifolds
We generalize the notion of H-type sub-Riemannian manifolds introduced by Baudoin and Kim, and then introduce a notion of parallel Clifford structure related to a recent work of Moroianu and
Z. Badreddine - Optimal transportation problem and MCP property on sub-Riemannian structures
This presentation is devoted to the study of mass transportation on sub-Riemannian geometry. In order to obtain existence and uniqueness of optimal transport maps, the first relevant method to
V. Franceschi - Sub-riemannian soap bubbles
The aim of this seminar is to present some results about minimal bubble clusters in some sub-Riemannian spaces. This amounts to finding the best configuration of m ∈ N regions in a manifold
F. Boarotto - Normal forms around regular abnormal curves in rank-two distributions (Part 2)
Let (M, ∆) be a rank-two sub-Riemannian structure on a smooth manifold M, and let x, y be any two points on M. In this talk I will present some recent results concerning the description of the set
B. Gris - A sub-riemannian metric from constrained deformations
A general method to study a population of objects (images, meshes) is to examine how these objects can be deformed by a chosen class of diffeomorphisms. When these objects satisfy some constraints
D. Vittone - Rectifiability issues in sub-Riemannian geometry
In this talk we discuss two problems concerning “rectifiability” in sub-Riemannian geometry and particularly in the model setting of Carnot groups. The first problem regards the rectifiability of
F. Baudoin - Uniform sub-Laplacian comparison theorems on Sasakian manifolds
We will discuss sharp estimates for the sub-Laplacian of a family of distances converging to the sub-Riemannian one. We will deduce results for the sub-Riemannian distance. Uniform measure
F. Boarotto - Normal forms around regular abnormal curves in rank-two distributions (Part 1)
Let (M, ∆) be a rank-two sub-Riemannian structure on a smooth manifold M, and let x, y be any two points on M. In this talk I will present some recent results concerning the description of the set
Intervenants
Auteur d'une thèse en Mathématiques à Bourgogne Franche-Comté en 2017
Mathématicien, travaillant à l'université du Connecticut (2018)
Chargé de recherches CNRS au sein du laboratoire des Signaux et Systèmes (Ecole centrale d'électronique, 2017)
Ecrit aussi en anglais
Auteur d'une thèse de doctorat en mathématiques soutenue le 12-12-2006 à l'Ecole normale supérieure de Pise
Auteur d'une thèse en Mathématiques appliquées à Paris Saclay en 2016
Chargée de recherche CNRS au Laboratoire Jacques-Louis Lions, Sorbonne Université (en 2023)
Thèse de doctorat en Mathématiques appliquées soutenue en 2002 à l'Université de Paris 7