Ecoles d'été
Collections
2021
- FINE Joël
- TEWODROSE David
- BURKHARDT-GUIM Paula
- STERN Daniel
- LESOURD Martin
- WANG Jian
- LAI Yi
- LI Chao
- SEMOLA Daniele
- MONDINO Andrea
- BAMLER Richard H.
- PERALES Raquel
- OZUCH Tristan
- SCHULZE Felix
- SONG Antoine
- LYTCHAK Alexander
- SORMANI Christina
- RICHARD Thomas
- COURTOIS Gilles
- BESSON Gérard
- CASTILLON Philippe
- niveau 1 niveau 2 niveau 3
- document 1 document 2 document 3
2019
- GUENANCIA Henri
- HöRING Andreas
- DRUEL Stéphane
- TOUZET Frédéric
- SPICER Calum
- NOVIKOV Dmitriĭ Aleksandrovich
- MEERSSEMAN Laurent
- GHAZOUANI Selim
- DEROIN Bertrand
- DEMAILLY Jean-Pierre
- BINYAMINI Gal
- BELOTTO DA SILVA André Ricardo
- AMERIK Ekaterina
- REIS Helena
- POLIZZI Francesco
- PEREIRA Jorge Vitório
- LORAY Frank
- GASBARRI Carlo
- FLORIS Enrica
- DIVERIO Simone
- BOST Jean-Benoît
- ARAUJO Carolina
- niveau 1 niveau 2 niveau 3
- document 1 document 2 document 3
2018
- ZORICH Anton
- YURTTAS Öykü
- WRIGHT Alexander
- SMILLIE John
- SKRIPCHENKO Alexandra
- SCHLEIMER Saul
- MCMULLEN Curtis Tracy
- MATHEUS Carlos
- MARMI Stefano
- LIECHTI Livio
- HUBERT Pascal
- FOUGERON Charles
- SIMION Filip
- DEROIN Bertrand
- DAVIS Diana
- ARAMAYONA Javier
- APISA Paul
- CHEN Dawei
- PARIS-ROMASKEVICH Olga
- SANTHAROUBANE Ramanujan Harischandra
- PASQUINELLI Irene
- LENZHEN Anna
- GUTIéRREZ Rodolfo
- ESKIN Alex
- WEISS Barak
- LEININGER Chris
- FORNI Giovanni
- niveau 1 niveau 2 niveau 3
- document 1 document 2 document 3
2017
- YUAN Xinyi
- TANG Yunqing
- PIPPICH Anna-Maria von
- LOUGHRAN Daniel
- HUANG Zhizhong
- SOULé Christophe
- SALBERGER Per
- PEYRE Emmanuel
- GAUDRON Eric
- FREIXAS I MONTPLET Gérard
- DUJARDIN Romain
- CHEN Huayi
- CHAMBERT-LOIR Antoine
- BRUINIER Jan Hendrik
- BURGOS GIL José Ignacio
- BOST Jean-Benoît
- ANDREATTA Fabrizio
- niveau 1 niveau 2 niveau 3
- document 1 document 2 document 3
2016
- MAILLOT Sylvain
- LUO Feng
- COURTOIS Gilles
- MAZET Laurent
- KETOVER Daniel
- HERSONSKY Sa'Ar
- GABAI David
- BUZANO Reto
- YOUNG Robert Kehoe.
- WILKING Burkhard
- WALSH G.R.
- VIACLOVSKY Jeff
- SOUTO CLéMENT Juan
- SCHLENKER Jean-Marc
- SABOURAU Stéphane
- RUPFLIN Melanie
- MARKOVIC Vladimir
- BELEGRADEK Igor
- BEFFARA Vincent
- RICHARD Thomas
- niveau 1 niveau 2 niveau 3
- document 1 document 2 document 3
2015
- RöGER Matthias
- PISANTE Giovanni
- WICKRAMASEKARA Neshan
- MAGGI Francesco
- LIANG Xiangyu
- LEONARDI Gian Paolo
- KIRCHHEIM Bernd
- GIACOMINI Alessandro
- DE LELLIS Camillo
- FU Joseph H. G.
- TORO Tatiana
- TONEGAWA Yoshihiro
- DAVID Guy
- ALIKAKOS Nicholas D.
- ALBERTI Giovanni
- BRAIDES Andrea
- niveau 1 niveau 2 niveau 3
- document 1 document 2 document 3
2014
- STROHMAIER Alexander
- ZWORSKI Maciej
- JOUDIOUX Jérémie
- KLAINERMAN Sergiu
- LEFLOCH Philippe G.
- MASON Lionel J.
- DYATLOV Semyon
- DAPPIAGGI Claudio
- DAFERMOS Mihalis
- BLUE Pieter
- BACKDAHL Thomas
- BACHELOT Alain
- VASY András
- SZEFTEL Jérémie
- GOVER Ashwin Roderick
- GéRARD Christian
- ANDERSSON Lars
- niveau 1 niveau 2 niveau 3
- document 1 document 2 document 3
2013
- LIARDET Pierre
- GORODNIK Alexander
- POLLICOTT Mark
- VERGER-GAUGRY Jean-Louis
- FROUGNY Christiane
- DURAND Fabien
- DAJANI Karma
- BOYLE Mike
- BERTIN Marie-José
- BERTHé Valérie
- niveau 1 niveau 2 niveau 3
- document 1 document 2 document 3
2012
- VITERBO Claude
- TELEMAN Andrei
- LALONDE François
- SUKHOV Alexandre
- IVACHKOVITCH Sergueï
- DUVAL Julien
- DEMAILLY Jean-Pierre
- CERVEAU Dominique
- FORSTNERIč Franc
- niveau 1 niveau 2 niveau 3
- document 1 document 2 document 3
2011
- LEE Yuan-Pin
- MAULIK Davesh
- PERRIN Nicolas
- MANN Etienne
- MANIVEL Laurent
- PIXTON Aaron
- PANDHARIPANDE Rahul
- MULASE Motohico
- CHIODO Alessandro
- niveau 1 niveau 2 niveau 3
- document 1 document 2 document 3
Cours/Séminaire
Phong NGUYEN - Recent progress on lattices's computations 2
This is an introduction to the mysterious world of lattice algorithms, which have found many applications in computer science, notably in cryptography. We will explain how lattices are represented by
Aurel PAGE - Cohomology of arithmetic groups and number theory: geometric, asymptotic and computati…
In this lecture series, the first part will be dedicated to cohomology of arithmetic groups of lower ranks (e.g., Bianchi groups), their associated geometric models (mainly from hyperbolic geometry)
Alexander HULPKE - Computational group theory, cohomology of groups and topological methods 5
The lecture series will give an introduction to the computer algebra system GAP, focussing on calculations involving cohomology. We will describe the mathematics underlying the algorithms, and how to
Alexander HULPKE - Computational group theory, cohomology of groups and topological methods 4
The lecture series will give an introduction to the computer algebra system GAP, focussing on calculations involving cohomology. We will describe the mathematics underlying the algorithms, and how to
Gabriele NEBE - Lattices, Perfects lattices, Voronoi reduction theory, modular forms, computations …
The talks of Coulangeon will introduce the notion of perfect, eutactic and extreme lattices and the Voronoi's algorithm to enumerate perfect lattices (both Eulcidean and Hermitian). The talk of Nebe
Oussama Hamza - Hilbert series and mild groups
Let $p$ be an odd prime number and $G$ a finitely generated pro-$p$ group. Define $I(G)$ the augmentation ideal of the group algebra of $G$ over $F_p$ and define the Hilbert series of $G$ by: $G(t):
Tobias Moede - Coclass theory for nilpotent associative algebras
The coclass of a finite p-group of order p^n and class c is defined as n-c. Using coclass as the primary invariant in the investigation of finite p-groups turned out to be a very fruitful approach.
Zachary Himes - On not the rational dualizing module for $\text{Aut}(F_n)$
Bestvina--Feighn proved that $\text{Aut}(F_n)$ is a rational duality group, i.e. there is a $\mathbb{Q}[\text{Aut}(F_n)]$-module, called the rational dualizing module, and a form of Poincar\'e duality
Paul GUNNELLS - Cohomology of arithmetic groups and number theory: geometric, asymptotic and comput…
In this lecture series, the first part will be dedicated to cohomology of arithmetic groups of lower ranks (e.g., Bianchi groups), their associated geometric models (mainly from hyperbolic geometry)
Paul GUNNELLS - Cohomology of arithmetic groups and number theory: geometric, asymptotic and comput…
In this lecture series, the first part will be dedicated to cohomology of arithmetic groups of lower ranks (e.g., Bianchi groups), their associated geometric models (mainly from hyperbolic geometry)
Paul GUNNELLS - Cohomology of arithmetic groups and number theory: geometric, asymptotic and comput…
In this lecture series, the first part will be dedicated to cohomology of arithmetic groups of lower ranks (e.g., Bianchi groups), their associated geometric models (mainly from hyperbolic geometry)
Paul GUNNELLS - Cohomology of arithmetic groups and number theory: geometric, asymptotic and comput…
In this lecture series, the first part will be dedicated to cohomology of arithmetic groups of lower ranks (e.g., Bianchi groups), their associated geometric models (mainly from hyperbolic geometry)
Conférence
Lewis Combes - Computing Selmer groups attached to mod p Galois representations
Selmer groups attached to a p-adic Galois representation have been studied thoroughly, but their mod p cousins have so far received less attention. In this talk we explain the construction of the p
Petru Constantinescu - On the distribution of modular symbols and cohomology classes
Motivated by a series of conjectures of Mazur, Rubin and Stein, the study of the arithmetic statistics of modular symbols has received a lot of attention in recent years. In this talk, I will
Kieran Child - Computation of weight 1 modular forms
A major achievement of modern number theory is the proof of a bijection between odd, irreducible, 2-dimensional Artin representations and holomorphic weight 1 Hecke eigenforms. Despite this result,
Tobias Braun - Orthogonal Determinants
Basic concepts and notions of orthogonal representations are introduced. If X : G → GL(V ) is a K-representation of a nite group G it may happen that its image X(G) xes a nondegenerate quadratic
Benjamin Brück - High-dimensional rational cohomology ...
By a result of Church-Putman, the rational cohomology of $\operatorname{SL}_n(\mathbb{Z})$ vanishes in "codimension one", i.e. $H^{{n \choose 2} -1}(\operatorname{SL}_n(\mathbb{Z});\mathbb{Q}) = 0$
Intervenants
Informaticien. Directeur de recherche INRIA, équipe Conception et analyse de systèmes pour la confidentialité et l'authentification de données et d'entités (CASCADE), Département d'informatique de l'ENS-PSL (DI-ENS, UMR 8548), École normale supérieure, Paris (en 2023)
Doctorat en sciences et techniques (Université de Paris VII, 1999)
Auteur d'une thèse en Mathematiques à Bordeaux en 2014
Mathématicienne. En poste : Lehrstuhl D für Mathematik, Technische Hochschule Aachen, Allemagne (en 2006). Professeure à l'Université d'Aix-la-Chapelle (RWTH Aachen University), Allemagne (en 2022)
Mathématicien. Professeur associé à l'Université de Massachusett (Etats-Unis) en 2007.