Canal-U

Mon compte
Inria

Eternal family trees and dynamics on unimodular random graphs (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)


Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/inria/embed.1/eternal_family_trees_and_dynamics_on_unimodular_random_graphs_workshop_erc_nemo_processus_ponctuels_et_graphes_aleatoires_unimodulaires.50447?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Auteur(s) :
Haji-Mirsadeghi Mir-Omid

Producteur Canal-U :
Inria
Contacter le contributeur
J’aime
Imprimer
partager facebook twitter Google +

Eternal family trees and dynamics on unimodular random graphs (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)

This talk is centered on covariant dynamics on unimodular random graphs and random networks (marked graphs), namely maps from the set of vertices to itself which are preserved by graph or network isomorphisms. Such dynamics are referred to as vertex-shifts here. These dynamics have point-shifts on point processes as a subclass. First we give a classification of vertex-shifts on unimodular random networks. Each such vertex-shift partitions the vertices into a collection of connected components and foils. The latter are discrete analogues the stable manifold of the dynamics. The classification is based on the cardinality of the connected components and foils. Up to an event of zero probability, there are three classes of foliations in a connected component: F/F (with finitely many finite foils), I/F (infinitely many finite foils), and I/I (infinitely many infinite foils). In the especial case of point-shifts on stationary point processes the notion of relative intensity can be defined. This notion formalizes the intuition of invariance of dimension between consecutive foils and it is the key element to prove this result for the Hausdorff unimodular dimension of foils. An infinite connected component of the graph of a vertex-shift on a random network forms an infinite tree with one selected end which is referred to as an Eternal Family Tree. Such trees can be seen as stochastic extensions of branching processes. Unimodular Eternal Family Trees can be seen as extensions of critical branching processes. The class of offspring-invariant Eternal Family Trees, allows one to analyze dynamics on networks which are not necessarily unimodular. These can be seen as extensions of not necessarily critical branching processes. Several construction techniques of Eternal Family Trees are proposed, like the joining of trees or moving the root to a far descendant.

  •  
  •  
    Date de réalisation : 20 Mars 2019
    Lieu de réalisation : Paris
    Durée du programme : 57 min
    Classification Dewey : Probabilités, Statistiques mathématiques, Mathématiques appliquées
  •  
    Catégorie : Conférences
    Niveau : niveau Doctorat (LMD), Recherche
    Disciplines : Mathématiques et informatique, Probabilités
    Collections : ERC Nemo, Workshop Processus ponctuels et graphes aléatoires unimodulaires (20-22 mars 2019)
    ficheLom : Voir la fiche LOM
  •  
    Auteur(s) : Haji-Mirsadeghi Mir-Omid
    producteur : INRIA (Institut national de recherche en informatique et automatique)
    Editeur : INRIA (Institut national de recherche en informatique et automatique) , Baccelli François
  •  
    Langue : Anglais
    Mots-clés : processus ponctuels, graphes aléatoires, dynamique des réseaux stochastiques, modélisation réseau
 

commentaires


Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)
 

Dans la même collection

 Point processes, cost and the growth of rank for locally compact groups (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Spectral embedding for graph classification (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Strict monotonicity of percolation thresholds under covering maps (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Emergence of extended states at zero in the spectrum of sparse random graphs (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 On the modified Palm version (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Entropic inequalities for unimodular networks (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires
 A notion of entropy for limits of sparse marked graphs (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Comments and problems regarding large graphs. (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Sampling cluster point processes: a review (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Absence of percolation for Poisson outdegree-one graphs (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Subdiffusivity of random walks on random planar maps, via stationarity (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Stein-Malliavin method for discrete alpha stable point processes (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Central Limit theorem for quasi-local statistics of point processes with fast decay of correlations (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 On the notion of dimension of unimodular discrete spaces (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 A stable marriage between order and disorder (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
FMSH
 
Facebook Twitter Google+
Mon Compte