Notice
Dr Horacio Cabral - RNA/Polymer-Based Supramolecular Approaches for mRNA Delivery
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Messenger RNA (mRNA) therapeutics are attracting much attention, particularly after the approval of two mRNA vaccine formulations for COVID-19. However, as a therapeutic modality, mRNA still has issues of poor bioavailability, showing rapid enzymatic degradation in physiological environments and the tendency to induce uncontrollable inflammatory responses. Supramolecular approaches for mRNA delivery are a realistic strategy for improving its bioavailability, reducing immunogenicity and enhancing the translational activity. Among supramolecular mRNA formulations, polymeric micelles, i.e., core-shell nano-structures self-assembled by polyion complexation between catiomers and mRNA in aqueous conditions, can effectively reduce enzymatic degradation of mRNA in biological milieu through precise control of the polymer design. mRNA-loaded polymeric micelles can improve the intracellular delivery of mRNA toward safe and efficient mRNA delivery to various cells and organs. Moreover, polymeric micelles can be combined with orthogonal supramolecular approaches using complementary RNA oligonucleotides, which allows installing protective and functional moieties to mRNA, or crosslinking various mRNA strands, by engineered hybridization. Herein, I will present our recent efforts to apply polymer- and RNA-based supramolecular approaches for effectively transporting mRNA therapeutics to target cells in vivo.
Thème
Dans la même collection
-
Dr Lori L. Isom - Dancing to a different tune: TANGO offers a precision medicine approach to treati…
Dravet syndrome is an intractable developmental and epileptic encephalopathy caused largely by de novo variants in SCN1A resulting in haploinsufficiency of the voltage-gated sodium channel α subunit
-
Prof. Michelle L. Hastings - Antisense Oligonucleotides for the Treatment of Disease
Antisense oligonucleotides (ASOs) have proven to be an effective therapeutic platform for the treatment of disease.
-
Dr Ana Cristina Calvo - Peripheral RNA Biomarkers in Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown origin that causes progressive muscle paralysis and motor neuron death.
-
Prof. Antonella Riccio - RNA metabolism in developing neurons
Neurons are cells with a complex morphology, which maintain their cellular structure through the compartmentalized expression of proteins essential for growth and plasticity.
-
Dr Débora Lanznaster - Combined Metabolomics and targeted-transcriptomics analysis in the muscle of…
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive loss of motor neurons, leading to paralysis and death of patients after 3-5 years of symptoms’ onset
-
Director Jason Potter - What matters for making highly expressed mRNA.
The need for high quality mRNA for therapeutic applications has grown substantially over the last few years due to the efficacy of the COVID mRNA vaccines.
-
Prof. Krzystof Sobczak - Compounds which alleviate the pleiotropic toxicity of RNA harboring expand…
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an incurable neurodegenerative disorder caused by expansion of CGG repeats in the FMR1 5'UTR.
-
Prof. Steven Dowdy - Delivery of RNA Therapeutics: The Great Endosomal Escape!
All macromolecular therapeutics, including ASOs, siRNAs, peptides, proteins, CRISPR, mRNA and non-viral DNA vectors, are taken up into cells by endocytosis.
-
Dr Liliane Massade - Squalenoyl siRNA PMP22 nanoparticles, a potent therapy for Charcot-Marie-Tooth…
Charcot-Marie-Tooth disease type 1A (CMT1A), caused by a duplication in chromosome 17, results in peripheral myelin protein 22 (Pmp22) over-expression and axon demyelination.
-
Prof. Jernej Ule - How do protein-RNA condensates form and contribute to disease?
Mutations in many genes encoding RNA-binding proteins (RBPs) cause neurologic diseases, and especially the amyotrophic lateral sclerosis (ALS).
-
Prof. Stefano Gustincich - Antisense long non-coding SINEUP RNAs: from molecular mechanism to thera…
Natural SINEUPs are antisense long non-coding RNAs that enhance translation of sense mRNAs. Their activity depends on the combination of two domains: the overlapping region, or binding domain (BD),