Notice
Dr Liliane Massade - Squalenoyl siRNA PMP22 nanoparticles, a potent therapy for Charcot-Marie-Tooth disease type 1A
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Charcot-Marie-Tooth disease type 1A (CMT1A), caused by a duplication in chromosome 17, results in peripheral myelin protein 22 (Pmp22) over-expression and axon demyelination. The diagnosis of CMT1A is based on decreased nerve conduction velocity (NCV) and compound muscle action potential (CMAP), with progressive muscle weakness and impaired sensations. Here, we provide a new therapy for CMT1A, based on the normalization of PMP22 expression by specific siRNA conjugated to squalene nanoparticles (siRNA PMP22-SQ NPs). Their administration resulted in the normalization of Pmp22 protein levels, reversed neuropathy scores and restored locomotor activity in two transgenic mouse models of CMT1A. Moreover, NCV and CMAP were significantly improved. Pathological studies demonstrated the regeneration of myelinated axons and myelin compaction. The normalization of sciatic nerve Krox20, Sox10 and neurofilament levels reflected the regeneration of both myelin and axons. Importantly, the positive effects of siRNA PMP22-SQ NPs lasted for as long as three weeks, and their renewed administration again resulted in full functional recovery. Beyond CMT1A, our findings can be considered as a potent therapeutic strategy for dominantly inherited peripheral neuropathies. They provide the proof of concept for a new precision therapy based on the normalization of disease gene expression by siRNA.
Thème
Dans la même collection
-
Dr Lori L. Isom - Dancing to a different tune: TANGO offers a precision medicine approach to treati…
Dravet syndrome is an intractable developmental and epileptic encephalopathy caused largely by de novo variants in SCN1A resulting in haploinsufficiency of the voltage-gated sodium channel α subunit
-
Prof. Michelle L. Hastings - Antisense Oligonucleotides for the Treatment of Disease
Antisense oligonucleotides (ASOs) have proven to be an effective therapeutic platform for the treatment of disease.
-
Dr Ana Cristina Calvo - Peripheral RNA Biomarkers in Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown origin that causes progressive muscle paralysis and motor neuron death.
-
Prof. Antonella Riccio - RNA metabolism in developing neurons
Neurons are cells with a complex morphology, which maintain their cellular structure through the compartmentalized expression of proteins essential for growth and plasticity.
-
Dr Débora Lanznaster - Combined Metabolomics and targeted-transcriptomics analysis in the muscle of…
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive loss of motor neurons, leading to paralysis and death of patients after 3-5 years of symptoms’ onset
-
Director Jason Potter - What matters for making highly expressed mRNA.
The need for high quality mRNA for therapeutic applications has grown substantially over the last few years due to the efficacy of the COVID mRNA vaccines.
-
Dr Horacio Cabral - RNA/Polymer-Based Supramolecular Approaches for mRNA Delivery
Messenger RNA (mRNA) therapeutics are attracting much attention, particularly after the approval of two mRNA vaccine formulations for COVID-19.
-
Prof. Krzystof Sobczak - Compounds which alleviate the pleiotropic toxicity of RNA harboring expand…
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an incurable neurodegenerative disorder caused by expansion of CGG repeats in the FMR1 5'UTR.
-
Prof. Steven Dowdy - Delivery of RNA Therapeutics: The Great Endosomal Escape!
All macromolecular therapeutics, including ASOs, siRNAs, peptides, proteins, CRISPR, mRNA and non-viral DNA vectors, are taken up into cells by endocytosis.
-
Prof. Jernej Ule - How do protein-RNA condensates form and contribute to disease?
Mutations in many genes encoding RNA-binding proteins (RBPs) cause neurologic diseases, and especially the amyotrophic lateral sclerosis (ALS).
-
Prof. Stefano Gustincich - Antisense long non-coding SINEUP RNAs: from molecular mechanism to thera…
Natural SINEUPs are antisense long non-coding RNAs that enhance translation of sense mRNAs. Their activity depends on the combination of two domains: the overlapping region, or binding domain (BD),