# Canal-U

Mon compte

## Absence of percolation for Poisson outdegree-one graphs (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)

Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/inria/embed.1/absence_of_percolation_for_poisson_outdegree_one_graphs_workshop_erc_nemo_processus_ponctuels_et_graphes_aleatoires_unimodulaires.50439?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Auteur(s) :
Coupier David

Producteur Canal-U :
Inria
Contacter la chaine
J’aime
Imprimer
partager

### Absence of percolation for Poisson outdegree-one graphs (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)

A Poisson outdegree-one graph is a directed graph based on a marked Poisson point process such that each vertex has only one outgoing edge. We state the absence of percolation for such graphs satisfying two assumptions. The Shield assumption roughly says that the graph is locally determined with possible random horizons. The Loop assumption ensures that any forward branch merges on a loop provided that the Poisson point process is augmented with a finite collection of well-chosen points. This result allows to solve a conjecture by D. Daley, S. Ebert and G. Last on the absence of percolation for the “line-segment model”. In this planar model, a segment is growing from any point of the Poisson process and stops its growth whenever it hits another segment. The random directions are picked independently and uniformly on the unit sphere. This is a joint work with D. Dereudre and S. Le Stum.

•
•
Date de réalisation : 20 Mars 2019
Lieu de réalisation : Paris
Durée du programme : 53 min
Classification Dewey : Probabilités, Statistiques mathématiques, Mathématiques appliquées
•
Catégorie : Conférences
Niveau : niveau Doctorat (LMD), Recherche
Disciplines : Mathématiques et informatique, Probabilités
Collections : ERC Nemo, Workshop Processus ponctuels et graphes aléatoires unimodulaires (20-22 mars 2019)
ficheLom : Voir la fiche LOM
•
Auteur(s) : Coupier David
producteur : INRIA (Institut national de recherche en informatique et automatique)
Editeur : Baccelli François, INRIA (Institut national de recherche en informatique et automatique)
•
Langue : Anglais
Mots-clés : processus ponctuels, graphes aléatoires, dynamique des réseaux stochastiques, modélisation réseau

## commentaires

Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)