Conférence
Notice
Lieu de réalisation
École Normale Supérieure, Paris.
Langue :
Anglais
Crédits
Claire Boyer (Production), Djalil Chafaï (Production), Joseph Lehec (Production), Alexandra Carpentier (Intervention)
Conditions d'utilisation
Droit commun de la propriété intellectuelle
DOI : 10.60527/kmaa-8t60
Citer cette ressource :
Alexandra Carpentier. CEREMADE. (2019, 4 juillet). Carpentier - Introduction to some problems of composite and minimax hypothesis testing. [Vidéo]. Canal-U. https://doi.org/10.60527/kmaa-8t60. (Consultée le 5 décembre 2024)

Carpentier - Introduction to some problems of composite and minimax hypothesis testing

Réalisation : 4 juillet 2019 - Mise en ligne : 4 novembre 2019
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

A fundamental question in statistics is: how well can we fulfil a given aim given the data that one possesses? Answering this question sheds light on the possibilities, but also on the fundamental limitations, of statistical methods and algorithms. In this talk, we will consider some examples of this question and its answers in the hypothesis testing setting. We will consider the Gaussian model in (high) dimension p where the data are of the form X = \theta + \sigma \epsilon, where \epsilon is a standard Gaussian vector with identity covariance matrix.  An important hypothesis testing question consists in deciding whether \theta belongs to a given subset \Theta_0 of R^p (null hypothesis) or whether the l_2 distance between \theta and the set \Theta_0 is larger than some quantity \rho (alternative hypothesis). We will investigate how difficult, or easy, this testing problem is, namely how large \rho has to be so that the testing problem has a meaningful solution - i.e. that a non-trivial tests exists. We will see through several examples that the answer to this question depends on the shape of \Theta_0 in an interesting way.

Intervention

Sur le même thème