Strict monotonicity of percolation thresholds under covering maps (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)

Réalisation : 20 mars 2019 Mise en ligne : 20 mars 2019
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3

Percolation is a model for propagation in porous media that as introduced in  1957 by Broadbent and Hammersley. An infinite graph G models the geometry of the situation and a parameter p embodies its porosity: percolation consists in keeping independently each edge with probability p, erasing it otherwise, and looking at the infinite connected components of the resulting graph. It turns out that there is a critical porosity: for smaller porosities, all components are finite almost surely, while for larger ones, there is almost surely at least one infinite component. How does this critical porosity depend on the underlying graph? This is a broad question, that also has connections with the behaviour at the critical point. In this talk, we will consider this question in the following perspective: we will prove that, under reasonable conditions, quotienting a graph strictly increases it critical porosity. This is joint work with Franco Severo.

Lieu de réalisation
Langue :
INRIA (Institut national de recherche en informatique et automatique) (Production), INRIA (Institut national de recherche en informatique et automatique) (Publication), François Baccelli (Publication)
Conditions d'utilisation
Droit commun de la propriété intellectuelle
Citer cette ressource:
Inria. (2019, 20 mars). Strict monotonicity of percolation thresholds under covering maps (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires). [Vidéo]. Canal-U. (Consultée le 30 juin 2022)



  • [1] P Armitage and Doll. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer, 8(1) :1–12, 1954.
  • [2] S H Moolgavkar, N E Day, and R G Stevens. Two-stage model for carcinogenesis : Epidemiology of breast cancer in females. Journal of the National Cancer Institute, 65 :559–569, 1980.
  • [3] M. C. Pike, M. D. Krailo, B. E. Henderson, J. T. Casagrande, and D. G. Hoel. ’hormonal’ risk factors, ’breast tissue age’ and the age-incidence of breast cancer. Nature, 303(5920) :767–770, 1983.
  • [4] E B Claus, N Risch, and W D Thompson. The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast cancer research and treatment, 28 :115–120, Nov 1993.
  • [5] M H Gail and J Benichou. Validation studies on a model for breast cancer risk. Journal of the National Cancer Institute, 86 :573–575, Apr 1994.
  • [6] G Plu-Bureau, M G Lê, R Sitruk-Ware, J C Thalabard, and P Mauvais-Jarvis. Progestogen use and decreased risk of breast cancer in a cohort study of premenopausal women with benign breast disease. British journal of cancer, 70 :270–277, 1994.
  • [7] Eiliv Lund and Vanessa Dumeaux. Systems epidemiology in cancer. Cancer epidemiology, biomarkers & prevention, 17 :2954–2957, 2008.
  • [8] Eiliv Lund, Vanessa Dumeaux, Tonje Braaten, Anette Hjartåker, Dagrun Engeset, Guri Skeie, and Merethe Kumle. Cohort profile : The norwegian women and cancer study–nowac–kvinner og kreft. International journal of epidemiology, 37 :36–41, 2008.
  • [9] Marco Gerlinger, Andrew J Rowan, Stuart Horswell, James Larkin, David Endesfelder, Eva Gronroos, Pierre Martinez, Nicholas Matthews, Aengus Stewart, Patrick Tarpey, Ignacio Varela, Benjamin Phillimore, Sharmin Begum, Neil Q McDonald, Adam Butler, David Jones, Keiran Raine, Calli Latimer, Claudio R Santos, Mahrokh Nohadani, Aron C Eklund, Bradley Spencer-Dene, Graham Clark, Lisa Pickering, Gordon Stamp, Martin Gore, Zoltan Szallasi, Julian Downward, P Andrew Futreal, and Charles Swanton. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England journal of medicine, 366 :883–892, Mar 2012.
  • [10] Eiliv Lund, Nicolle Mode, Marit Waaseth, and Jean-Christophe Thalabard. Overdiagnosis of breast cancer in the norwegian breast cancer screening program estimated by the norwegian women and cancer cohort study. BMC cancer, 13 :614, 2013.
  • [11] Mary-Claire King. « the race » to clone brca1. Science, 343 :1462–1465, 2014.
  • [12] Vanessa Dumeaux, Josie Ursini-Siegel, Arnar Flatberg, Hans E Fjosne, Jan-Ole Frantzen, Marit Muri Holmen, Enno Rodegerdts, Ellen Schlichting, and Eiliv Lund. Peripheral blood cells inform on the presence of breast cancer : a population-based case-control study. International journal of cancer, 136 :656–667, 2015.
  • [13] Eiliv Lund, Lars Holden, Hege Bøvelstad, Sandra Plancade, Nicolle Mode, Clara-Cecilie Günther, Gregory Nuel, Jean-Christophe Thalabard, and Marit Holden. A new statistical method for curve group analysis of longitudinal gene expression data illustrated for breast cancer in the nowac postgenome cohort as a proof of principle. BMC medical research methodology, 16 :28, 2016.
  • [14] NE Breslow and NE Day. Statistical Methods in Cancer Research Volume II – The Design and Analysis of Cohort Studies, volume II of IARC Scientific Publications No 82. IARC, 1987.
  • [15] NE Breslow and NE Day. Statistical Methods in Cancer Research. Volume I :The analysis of case- control studies, volume I of IARC Scientific Publications No. 32. IARC, 1980.

Dans la même collection

Sur le même thème