Conférence

Le monde quantique au travail : l'optoélectronique

Réalisation : 12 juillet 2005 Mise en ligne : 12 juillet 2005
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

L'optoélectronique est une discipline scientifique et technologique qui a trait la réalisation et l'étude de composants mettant en jeu l'interaction entre la lumière et les électrons dans la matière. Ces composants, qui permettent de transformer la lumière en courant électrique et réciproquement, sont des instruments privilégiés pour comprendre le nature de la lumière et des électrons. Il est donc peu étonnant que ce soit le tout premier composant opto-électronique (la cellule photoélectrique) qui soit à l'origine de la découverte d'Albert Einstein de la dualité onde-corpuscule. Dans cette Conférence, nous décrirons comment ce concept fondateur de la Physique Quantique a permis de comprendre les propriétés électroniques et optiques de la matière. Nous décrirons comment ces propriétés quantiques sont mises en oeuvre dans les quelques briques de base conceptuelles et technologiques à partir desquelles tous les composants optoélectroniques peuvent être élaborés et compris. Nous décrirons enfin quelques exemples de ces composants optoélectroniques qui ont changé profondément notre vie quotidienne : - les détecteurs quantiques (caméscopes, cellules solaires, infrarouge…) - les diodes électroluminescentes (affichage, éclairage, zapettes, …) - les diodes laser (réseaux de télécommunication, lecteurs de CD-DVD, internet, …) Nous explorerons finalement quelques nouvelles frontières de cette discipline, qui est un des domaines les plus actifs et des plus dynamiques de la Physique à l'heure actuelle.

Chapitres
    Thèmes
    Notice
    Langue :
    Français
    Crédits
    UTLS - la suite (Réalisation), UTLS - la suite (Production)
    Conditions d'utilisation
    Droit commun de la propriété intellectuelle
    Citer cette ressource:
    UTLS. (2005, 12 juillet). Le monde quantique au travail : l'optoélectronique. [Vidéo]. Canal-U. https://www.canal-u.tv/31399. (Consultée le 28 juin 2022)
    Contacter
    Documentation

    Transcription* de la 590e conférence de l'Université de tous les savoirs prononcée le 12 juillet 2005

    Le monde quantique au quotidien : l'optoélectronique

    Par Emmanuel Rosencher

    Cet exposé propose de vous montrer comment la mécanique quantique, domaine abstrait, sophistiqué, voire ésotérique pour certains, est à la base de révolutions technologiques qui ont transformé notre quotidien. Nous montrerons tout d'abord comment la physique quantique est née de l'étude d'un composant optoélectronique (définissons l'optoélectronique comme étant l'étude de l'interaction qui a lieu entre la lumière et les électrons dans les solides). Nous montrerons ensuite comment la mécanique quantique a rendu la monnaie de sa pièce à l'optoélectronique en lui fournissant des briques de bases conceptuelles extrêmement puissantes, à partir desquelles un certains nombres de composants comme les détecteurs quantiques ou les émetteurs de lumière ont été réalisés. Nous présenterons enfin les défis actuels que l'optoélectronique tente de relever.

    Là où tout commence : l'effet photoélectrique

    Tout commence en 1887. Rudolph Hertz, célèbre pour la découverte des ondes Hertziennes, va découvrir l'effet photoélectrique, aidé de son assistant Philipp von Lenard. Cet effet va révolutionner notre compréhension de la lumière comme de la matière, bref, notre vision du monde. L'expérience qu'ils ont réalisée était pourtant on ne peut plus simple : deux plaques métalliques sont placées dans le vide. On applique à ces plaques une différence de potentiel. Le courant qui circule dans le système est mesuré. Comme les plaques métalliques sont placées dans le vide, les électrons n'ont pas de support pour passer d'une électrode à l'autre, et donc aucun courant ne peut circuler dans le système. Hertz décide alors d'illuminer une des plaques avec de la lumière rouge, il s'aperçoit que rien ne change. Par le hasard de l'expérience, il éclaire alors la plaque avec de la lumière bleue, et s'aperçoit cette fois qu'un courant commence à circuler. Il est important de noter que, même avec une grande intensité de lumière rouge, aucun courant ne circule, alors qu'une faible lumière bleue fait circuler le courant. Les deux savants concluent leur expérience par la phrase suivante, qui deviendra une des pierres fondatrices de la physique quantique : « il semble y avoir un rapport entre l'énergie des électrons émis et la fréquence de la lumière excitatrice. »

    A la même époque, un autre grand savant, Max Planck, travaille sur un sujet totalement différent, à savoir le « spectre du corps noir » ( voir Figure 1): en d'autres termes, il étudie la lumière émise par des corps chauffés. Le fer, par exemple, une fois chauffé devient rouge. A plus haute température, il vire au jaune, puis au blanc. Max Planck étudie donc le fait que tous les corps chauffés vont avoir un comportement commun : à une température donnée, ils rayonneront principalement une certaine longueur d'onde. Par exemple, notre corps à 37°C émet des ondes à 10 mm (lumière infrarouge non visible). En revanche, à 5000°C (température correspondant à la surface du soleil), le maximum se déplace, le corps émet autour de 500 nm (jaune). Cette correspondance entre la température du corps noir et la nature de la lumière émise par ce corps va littéralement rendre fou toute une génération de physiciens qui n'arrivent pas à expliquer ce phénomène. Max Planck, au début du XXème siècle, déclarera à la société allemande de physique qu'il peut rendre compte de ce comportement. Pour cela, il doit supposer que la lumière arrive en paquets d'énergie et que chaque paquet d'énergie est proportionnel à la fréquence de la lumière, c'est-à-dire que l'énergie de chaque grain de lumière est le produit de la fréquence de cette onde par une constante, ridiculement petite (environ 6.10-34 J.s). S'il est persuadé d'avoir fait une grande découverte, Max Planck n'a pour autant pas la moindre idée de ce que sont ces « quanta » d'énergie qu'il a introduits dans son calcul.

    figure1

    Spectre du corps noir (le fer chauffé de la photo émet des longueurs d'onde réparties sur la courbe bleue, la courbe rouge est émise par un humain qui n'a pas de fièvre)

    Pendant ce temps, à la société Anglaise de physique, Lord Kelvin fait son discours inaugural, où il déclare que toute la physique est constituée, la récente théorie ondulatoire de Maxwell rendant très bien compte du comportement de la lumière. Il ne reste plus que quelques phénomènes incompris, d'un intérêt secondaire. Parmi ces phénomènes incompris figurent évidemment le spectre du corps noir, et l'effet se produisant dans la cellule photoélectrique.

    Albert Einstein va réaliser le tour de force de montrer que ces deux phénomènes ont une même origine, origine qu'il baptisera la dualité onde-corpuscule. L'hypothèse révolutionnaire d'Einstein est de dire que la lumière, considérée jusqu'alors comme une onde, est également une particule. A la fois onde et particule, la lumière véhicule ainsi une quantité d'énergie bien précise.

    Le raisonnement d'Einstein se comprend bien sur un diagramme d'énergie, où est représentée l'énergie des électrons en fonction de leur position ( voir Figure 2). Pour être arraché du métal, un électron doit recevoir l'énergie qui lui permet d'échapper à l'attraction du métal. Cette énergie est appelée potentiel d'ionisation. Les électrons sont donc piégés dans le métal, et il leur faut franchir ce potentiel d'ionisation pour le quitter. L'hypothèse d'Einstein consiste à dire que la lumière est constituée de particules et que chaque particule a une énergie valant h.f, où h est la constante établie par Max Planck, et f la fréquence de la lumière. Si cette énergie h.f est inférieure au potentiel d'ionisation (comme c'est le cas pour la lumière rouge), aussi puissant que soit le faisceau de lumière, nous n'arracherons pas le moindre électron au métal. En revanche, si la lumière est bleue, la longueur d'onde est plus courte, ce qui correspond à une fréquence f plus grande, donc une énergie plus grande, les électrons vont alors acquérir l'énergie suffisante pour quitter le métal et aller dans le vide. Cette théorie permet donc d'expliquer le phénomène jusqu'alors incompris observé par Hertz et Leenard.

    figure2

    Diagramme d'énergie d'Einstein

    Einstein ne se contente pas de cette explication, il propose une expérience permettant de vérifier son hypothèse. Si on mesure l'excès d'énergie des photons (représenté DE sur la Figure 2), c'est-à-dire si on mesure l'énergie des électrons une fois qu'ils ont été arrachés par la lumière, on doit pouvoir en déduire la valeur de la constante de Planck h.

    La théorie d'Einstein est accueillie à l'époque avec fort peu d'enthousiasme. La physique semblait jusqu'alors bien comprise, la lumière était une onde, et on rendait compte de l'écrasante majorité des phénomènes observés. Et Einstein vient tout bouleverser ! De nombreux scientifiques vont donc tenter de montrer que sa théorie est fausse. Notamment Millikan, qui va passer 12 années de sa vie à tester la prédiction d'Einstein. Millikan reconnaîtra finalement son erreur : son expérience montrera bien que l'énergie en excès dans les électrons est proportionnelle à la fréquence de la lumière excitatrice, et le coefficient de proportionnalité est bien la constante de Planck h.

    Einstein venait d'unifier deux phénomènes qu'a priori rien n'apparentait : la lumière émise par un corps chauffé, et l'excès d'énergie d'un électron émis dans le vide. Ce lien existe, et c'est la physique quantique.

    On peut donc relier la longueur d'onde de la lumière à son énergie ( voir Figure 3). Ainsi, le soleil qui rayonne principalement dans le jaune, c'est-à-dire à des longueurs d'onde d'environ 500 nm émet des photons de 2 eV (électron-volt). Le corps humain à 37°C rayonne une onde à 10 mm, ce qui correspond à des photons d'énergie 0,1eV. Rappelons qu'un électron-volt correspond à l'énergie d'un électron dans un potentiel électrique de 1V.

    figure3

    Correspondance entre longueur d'onde de la lumière et énergie du photon

    Les briques de base

    Comme nous l'avons mentionné en introduction, la physique entre alors dans un cercle vertueux : la technologie (par la cellule photoélectrique) fournit à la physique un nouveau concept fondamental, la physique quantique va en retour développer des outils conceptuels extrêmement puissants qui vont permettre le développement des composants optoélectroniques que nous allons étudier.

    Les Semi-conducteurs

    Avant d'entrer dans ce cercle vertueux, un concept manque encore à la physique quantique. Il va être proposé par le français Louis de Broglie en 1925. Ce dernier fait le raisonnement suivant : Einstein vient de montrer que la lumière, qui est une onde, se comporte comme une particule. Que donnerait le raisonnement inverse? Autrement dit, pourquoi la matière (les atomes, les électrons, tout objet ayant une masse) ne se comporterait-elle pas également comme une onde ? De Broglie va montrer qu'on peut associer à l'énergie d'une particule matérielle une longueur d'onde. Il montre notamment que, plus la particule a une énergie élevée, plus sa longueur d'onde est faible. La correspondance entre énergie et longueur d'onde pour la matière différera cependant de celle pour les photons, car les photons n'ont pas de masse.

    Partant de cette hypothèse, Wigner, Seitz et Bloch se demandent ce que devient cette longueur d'onde lorsque l'électron est dans la matière, où il est soumis à un potentiel d'environ 5V. Leur calcul leur montre que sa longueur d'onde est alors d'environ 5 angströms (1 angström valant 10-10 mètres)... ce qui correspond à peu près à la distance entre atomes dans la matière.

    figure4

    Comportement d'une onde électronique dans la matière et naissance de la structure de bandes

    La physique quantique va alors donner une compréhension nouvelle et profonde du comportement des électrons dans la matière. Rappelons que la matière peut souvent être représentée par un cristal, c'est-à-dire un arrangement périodique d'atomes, distant de quelques angströms. Imaginons qu'une onde électronique (c'est-à-dire un électron) essaie de traverser le cristal. Si la longueur d'onde vaut 20 angströms, elle est très grande par rapport au maillage du cristal, et elle ne va donc pas interagir avec le cristal. Cette longueur d'onde va donc pouvoir circuler, on dira qu'elle est permise, et par conséquent l'énergie qui lui correspond est elle aussi permise (onde rouge sur la Figure 4). Il y aura un très grand nombre de longueur d'ondes permises, auxquelles correspondront des bandes d'énergies permises. En revanche, si la longueur d'onde de l'électron est de l'ordre de 5 angströms (onde bleue sur la Figure 4), c'est-à-dire de la distance être atomes, l'électron va alors résonner avec la structure du cristal, et l'onde ne va pas pouvoir pénétrer dans la matière. L'onde électronique est alors interdite dans la matière, et l'énergie qui lui correspond est également interdite dans la matière. Ainsi on voit apparaître, pour décrire les électrons dans la matière, une description en termes de bandes permises et de bandes interdites. Nous appellerons la bande permise de plus basse énergie (sur la figure 5) la bande de valence, et la bande permise au-dessus d'elle la bande de conduction.

    A partir de cette structure de bandes, Pauli va montrer que les atomes peuplent d'abord les états de plus basse énergie. Ils vont ainsi remplir complètement la bande de valence, et laisser la bande de conduction vide. Il montre alors que dans une telle configuration les électrons ne peuvent pas conduire l'électricité.

    figure5

    Les électrons de la bande de valence, comme les pièces d'un jeu de taquin

    Pour illustrer ses propos, comparons la matière à un jeu de taquin ( Figure 5). Rappelons que le taquin est un puzzle fait de pièces carrées et où ne manque qu'une pièce. C'est l'absence d'une pièce qui permet de déplacer les pièces présentes. Pour Pauli, une bande de valence pleine d'électrons, est comme un taquin qui n'aurait pas de trous : aucun élément ne peut bouger, car toutes les cases sont occupées. C'est pourquoi beaucoup de matériaux, notamment les semi-conducteurs (qui, comme leur nom l'indique sont de mauvais conducteurs), ne peuvent pas conduire le courant, leur bande de valence étant trop pleine. Pour conduire l'électricité, il va être nécessaire de prendre des électrons de la bande de valence, et de les envoyer dans la bande de conduction. Alors les rares électrons dans la bande de conduction auront tout l'espace nécessaire pour bouger, ils conduiront aisément le courant. De plus, ces électrons auront laissé de la place dans la bande de valence, ce qui revient, dans notre image, à enlever une pièce au taquin. Les électrons pourront alors bouger, mal, mais ils pourront bouger. Ce déplacement des électrons dans la bande de valence peut être réinterprété : on peut considérer qu'un électron se déplace pour occuper une place vacante, puis qu'un autre électron va occuper la nouvelle place vacante, et ainsi de suite... ou on peut considérer que nous sommes en présence d'un trou (une absence d'électron) qui se déplace dans le sens opposé au mouvement des électrons ! Cette interprétation nous indique alors que, dans la bande de valence, ce ne sont pas les électrons qui vont bouger, ce sont les « absences d'électrons », c'est-à-dire des trous, qui sont, de fait, de charge positive.

    Wigner, Pauli et Seitz venaient de résoudre une énigme qui datait du temps de Faraday (1791-1867), où l'on avait observé des charges positives se déplaçant dans la matière sans avoir idée de ce que c'était. Il s'agit en fait des trous se déplaçant dans la bande de valence. Pour la suite, nous nous intéresserons donc aux électrons se trouvant dans la bande de conduction, et aux trous de la bande de valence.

    Comment envoyer ces électrons de la bande de valence vers la bande de conduction ? En utilisant le photon ! Le photon va percuter un électron de la bande de valence et créer une paire électron-trou, c'est-à-dire qu'il va laisser un trou dans la bande de valence et placer un électron dans la bande de conduction. Il s'agit d'un phénomène d'absorption car au cours de ce processus, le photon disparaît. Il a été transformé en paire électron-trou.

    Evidemment le mécanisme inverse est possible : si on arrive à créer par un autre moyen une paire électron-trou, l'électron va quitter la bande de conduction pour se recombiner avec le trou dans la bande de valence, et émettre un photon. La longueur d'onde du photon émis correspondra à l'énergie de la bande interdite ( energy gap en anglais). Il y a donc une correspondance fondamentale entre la couleur du photon émis et l'énergie de la bande interdite.

    figure6

    Gap d'énergie et distance inter-atomiques des principaux semi-conducteurs

    La Figure 6 montre l'énergie de la bande interdite pour différents matériaux. On constate que certains matériaux se retrouvent sur la même colonne, c'est-à-dire qu'ils ont la même distance inter-atomique. C'est le cas par exemple de l'Arséniure de Gallium (GaAs) et de l'Aluminure d'Arsenic (AlAs). Etant des « jumeaux cristallographiques », il sera aisé de les mélanger, les faire croître l'un sur l'autre. En revanche, ils ont des bandes d'énergie interdite très différente. A partir de ce graphique, on peut donc conclure quel semi-conducteur conviendra à la lumière que l'on veut produire. Ainsi, la lumière rouge sera émise par le Phosphure de Gallium (GaP). Pour aller dans l'infrarouge lointain, un mélange entre CdTe et HgTe est cette fois préconisé.

    Le dopage et la jonction P-N

    Nous venons de présenter la première brique de l'optoélectronique, à savoir l'énergie de la bande interdite. La deuxième brique qui va nous permettre de réaliser des composants optoélectroniques va être le dopage. Comme nous l'avons dit précédemment, un semi-conducteur, si on n'y ajoute pas des électrons, conduit aussi bien qu'un bout de bois (c'est-à-dire plutôt mal !). Pour peupler la bande de valence, nous allons utiliser le dopage.

    Nous nous intéresserons aux éléments des colonnes III, IV et V de la classification périodique des éléments de Mendeleïev (une partie en est représentée Figure 7). Le numéro de la colonne correspond au nombre d'électrons se trouvant sur la dernière couche électronique. Ainsi les éléments de la colonne IV, dits tétravalents, comme le Carbone et le Silicium, possèdent IV électrons sur leur dernière couche. Dans la colonne III (éléments trivalents), nous trouverons le Bore, et dans la colonne V (éléments pentavalents) se trouve le Phosphore.

    figure7

    Dopage de type P et dopage de type N

    Regardons ce qui se passe si on introduit un élément pentavalent dans un cristal de Silicium. On peut dire que le Phosphore, tel l'adolescent dans une cour d'école, veut à tout prix ressembler aux copains. Ainsi, le Phosphore va imiter le Silicium et construire des liaisons électroniques avec 4 voisins. Il va donc laisser un électron tout seul. Cet électron va aller peupler la bande de conduction. C'est ce qu'on appelle le dopage de type N. Le Phosphore joue le rôle de Donneur d'électrons.

    Le raisonnement est le même pour des éléments trivalents comme le Bore. Ce dernier va mimer le comportement du Silicium en créant 4 liaisons électroniques. Pour cela, il va emprunter un électron à la structure de Silicium, consommant ainsi un électron dans la bande de valence. Il crée donc un trou dans la bande de valence. Le dopage est dit de type P. Le Bore joue le rôle d'Accepteur d'électrons.

    Le dopage n'est pas un processus aisé à réaliser. A l'heure actuelle, nous n'avons toujours pas trouvé le moyen de doper efficacement certains semi-conducteurs (c'est le cas du diamant par exemple). Pour le Silicium (Si) et l'Arséniure de Gallium (GaAs), le dopage est en revanche bien maîtrisé.

    On va alors pouvoir réaliser des jonctions P-N ( Figure 8). Il s'agit en fait de juxtaposer un matériau dopé P avec un matériau dopé N. Dans la zone dopée N, le Phosphore a placé de nombreux électrons dans la bande de conduction. La zone dopée P quant à elle possède de nombreux trous dans la bande de valence. Nous sommes ainsi en présence délectrons et de trous qui se « regardent en chiens de faïence ». Ils vont donc se recombiner. Ainsi, à l'interface, les paires électrons trous vont disparaître, et laisser seules des charges négatives dans la zone dopée P, et des charges positives dans la zone dopée N. Ces charges fixes (qui correspondant en fait aux atomes dopants ionisés) vont créer un champ électrique. Cette jonction P-N sera au cSur de très nombreux composants optoélectroniques.

    figure8

    Jonction P-N: les électrons de la zone N se recombinent avec les trous de la zone P, laissant des charges nues dans une zone baptisée zone de charge d'espace. Les charges fixes induisent un champ électrique.

    Le Puits Quantique

    Dernière brique de l'optoélectronique que nous présenterons : le puits quantique. Ce dernier peut être considéré comme le fruit du progrès technologique. Dans les années 70-80, les ingénieurs étudient l'Ultra-Vide, c'est-à-dire les gaz à très basse pression (10-13 atmosphère). Comme il s'agit d'un milieu extrêmement pur, bien vite on se rend compte, que cela reproduit les conditions primordiales dans lesquelles les matériaux ont été créés. Dans un tel milieu, on va alors pouvoir « jouer au bon dieu » et empiler des couches d'atomes, créer des structures artificielles qui n'existent pas dans la nature.

    Typiquement, il va être possible de réaliser des sandwichs de matériaux, où par exemple de l'Arséniure de Gallium (GaAs) serait pris entre deux tranches d'un matériau qui lui ressemble, AlGaAs (nous avons vu précédemment que AlAs et GaAs sont miscibles). Sur la photo ( Figure 9), issue d'un microscope électronique nous permettant d'observer les atomes, on voit que ces matériaux n'ont aucun problème à croître l'un sur l'autre. La couche de GaAs ne mesure que 20 angströms.

    figure9

    Puits quantique. En haut, sa composition. Au milieu une photo au microscope électronique d'une telle structure. En bas, diagramme d'énergie du puits quantique, la forme des oscillations de l'électron a également été représentée

    Examinons le comportement de l'électron dans un tel milieu. Le GaAs a plus tendance à attirer les électrons que AlGaAs. L'électron se trouve piégé dans un puits de potentiel. C'est alors qu'intervient la mécanique quantique, réinterprétant le puits de potentiel en « puits quantique ». L'électron est une onde, une onde prisonnière entre deux murs (les barrières de potentiel formées par l' AlGaAs). L'électron ne va avoir que certains modes d'oscillation autorisés, comme l'air dans un tuyau d'orgue qui ne va émettre que des sons de hauteur bien définie.

    Techniquement, il nous est possible de créer à peu près n'importe quel type de potentiel, puisqu'on est capable de contrôler l'empilement des atomes. Par exemple, plus on élargit le puits quantique, plus il y a de modes d'oscillation possibles pour l'électron, et plus il y a de niveaux d'énergies accessibles à l'électron. On peut ainsi synthétiser la répartition de niveau d'énergies que l'on souhaite.

    Nous avons à présent un bon nombre d'outils de base que nous a fournis la mécanique quantique : la structure de bandes, le dopage et la jonction P-N qui en découle, et pour finir, le puits quantique. Nous allons à présent voir comment ces concepts entrent en jeu dans les composants optoélectroniques.

    La détection quantique

    Le principe de la photo-détection quantique (utilisé dans tous les appareils photo numérique) est extrêmement simple : il s'agit, à l'aide d'un photon, de faire transiter l'électron entre un niveau de base, où il ne conduit pas l'électricité, et un niveau excité où il va la conduire. Le semi-conducteur pur peut par exemple faire office de photo-détecteur quantique ( Figure 10): à l'état de base, il ne conduit pas le courant, mais un photon peut créer, par effet photoélectrique, une paire électron-trou et placer un électron dans la bande de conduction, permettant le transport du courant.

    figure10

    Deux mécanismes de détection quantique. A gauche, on utilise la structure de bande d'un semi-conducteur. A droite, un puits quantique.

    Un puits quantique peut également réaliser cette fonction ( Figure 10): les électrons se trouvent piégés dans le puits quantiques, car la barrière d'AlGaAs les empêche de sortir, mais par absorption d'un photon, les électrons vont avoir l'énergie leur permettant de sortir du piège et donc de conduire le courant.

    L'effet Photovoltaïque

    Le détecteur quantique le plus répandu est la cellule photovoltaïque. Elle est constituée d'une jonction P-N. Imaginons que des photons éclairent la structure. Dans la zone ionisée (appelée zone de charge d'espace), ils vont alors créer des paires électron-trou. Mais cette région possédant un champ électrique du fait des charges fixes, les électrons vont être attirés par le Phosphore, les trous par le Bore, ce qui va générer un courant électrique.

    figure11

    Cellule photovoltaïque. En haut, la jonction P-N reçoit des photons qui créent des paires électron-trou. En bas, diagramme d'énergie montrant les électrons de la bande de conduction tombant dans la zone N, et les trous de la bande de valence remontant dans la zone P.

    On peut représenter ce mécanisme sur un diagramme d'énergie ( Figure 11). Le champ électrique présent au niveau de la jonction P-N provoque une courbure de la bande de valence et de la bande de conduction. Le photon va créer une paire électron-trou. L'électron va glisser le long de la pente de la bande de conduction, et se retrouver dans la zone dopée N, tandis que le trou, tel une bulle dans un verre de champagne, va remonter la bande de valence et se retrouver dans la zone dopée P.

    Les caméras CCD

    Techniquement, il existe des technologies pour synthétiser ces minuscules détecteurs par millions en une seule fois. Ces détecteurs ont changé notre vie quotidienne. En effet, au cSur de tous les appareils photo et caméscopes numériques se trouve une matrice CCD ( charge coupled devices). Il ne s'agit pas exactement de jonctions P-N, mais d'une myriade de transistors MOS. Néanmoins les concepts physiques mis en jeu sont tout à fait analogues. Il s'agit d'une couche semi-conductrice de Silicium séparée d'une couche métallique par une couche isolante d'oxyde. Lorsqu'un photon arrive dans la zone courbée du diagramme de bande (c'est là encore, la zone de charge d'espace), une paire électron-trou est créée, les électrons vont s'accumuler à l'interface entre le semi-conducteur et l'isolant, il vont alors pouvoir être « évacués » par les transistors qui vont récupérer les « tas d'électrons » et se les donner, comme des pompiers se passant des bacs d'eau (d'où leur nom). Les matrices CCD actuelles ont des caractéristiques vertigineuses, contenant aisément 10 millions de pixels mesurant chacun 6 mm x 6 mm.

    figure12

    Matrice CCD. A gauche, diagramme d'énergie d'un transistor MOS (Métal Oxide Silicium). A droite, photo d'une matrice CCD

    Les détecteurs infrarouges

    Un deuxième type de détecteurs très importants sont les détecteurs infrarouge, notamment ceux détectant les longueurs d'onde comprises entre 3 et 5 mm, et entre 8 et 12 mm. Comme nous l'avons mentionné au début, le corps humain à 37°C rayonne énormément de lumière, sur toute une gamme de longueurs d'onde (représentée en bleu sur la Figure 13), centrée autour de 10 mm. Mais l'atmosphère ne laisse pas passer toutes les longueurs d'onde (la courbe rouge représente la transmission de l'atmosphère). Et justement entre 3 et 5 mm, et entre 8 et 12 mm, elle a une « fenêtre de transparence ». En particulier, à plus haute altitude, un avion peut voir à plusieurs centaines de kilomètres dans la bande 8-12 mm. Un autre intérêt de détecter cette gamme de longueur d'onde est qu'elle correspond à l'absorption de certains explosifs qui seraient alors détectables.

    figure13

    Spectre de transmission de l'atmosphère (courbe rouge), et spectre d'émission du corps humain, c'est-à-dire d'un corps noir à 37°C (courbe bleue)

    Comment réaliser ces détecteurs autour de 5 et de 10 mm (c'est-à-dire ayant un gap d'énergie de 0,1 à 0,2 eV)? La Figure 6 nous indique que le couple CdTe (Tellure de Mercure) - HgTe (Tellure de Cadmium) est un bon candidat. Notons au passage que la France, grâce notamment aux laboratoires du CEA et de l'ONERA) est leader mondial dans ce domaine. Avec de tels détecteurs, il devient possible de voir des avions furtifs, indétectables par radar. Des applications existent aussi dans le domaine médical, où ces capteurs permettent de déceler certaines variations locales de température sur une simple image. Il est également possible de détecter le niveau de pétrole à l'intérieur d'un conteneur, l'inertie thermique du pétrole différant de celle de l'air.

    figure14

    Exemples d'images prises par des détecteurs infrarouges (source : www.x20.org)

    Les cellules solaires

    Dernier type de détecteur que nous examinerons : les cellules solaires, qui transforment la lumière en électricité. Le matériau roi (parce que le moins cher) dans ce domaine est le Silicium. Malheureusement son rendement quantique n'est pas bon (15%), c'est-à-dire que le Silicium absorbe très bien le rayonnement à 1 eV, tandis que le soleil émet essentiellement entre 2 à 3 eV. Des recherches sont actuellement menées afin de développer des matériaux absorbant plus efficacement dans ces gammes d'énergie. Ces recherches sont extrêmement importantes pour les nouvelles sources d'énergie.

    Les émetteurs de lumière

    Diodes électroluminescentes

    On se rappelle qu'en se recombinant, les paires électron-trous créent un photon. Réaliser un émetteur de lumière est donc possible à partir d'un puits quantique ( Figure 15). Ce dernier confine les électrons. Prenons, comme précédemment, le cas d'un puits quantique de GaAs « sandwiché » entre deux domaines d'AlGaAs. Cette fois, nous dopons N l'AlGaAs se trouvant d'un côté du puits, et P l'AlGaAs se trouvant de l'autre côté. Si on fait passer du courant dans cette structure, les électrons de la zone dopée N vont tomber dans le puits quantique, les trous de la zone dopée P vont monter dans le puits de la zone de valence. Une fois dans le puits quantique, électrons et trous vont se recombiner et émettre un photon. Ce composant est appelé Diode Electroluminescente (LED). Ce n'est ni plus ni moins qu'un photo-détecteur dans lequel on a forcé le courant à passer.

    figure15

    Diagramme d'énergie d'une diode électroluminescente. Trous de la zone P et électrons de la zone N vont être piégés dans le puits quantique et se recombiner en émettant de la lumière

    Les LED remplissent, elles aussi notre quotidien. Elles ont un énorme avantage sur d'autres type d'éclairage : le processus de création de photon d'une LED est extrêmement efficace. En effet, dans une LED chaque électron donne un photon. Ainsi avec un courant d'un ampère, on obtient une puissance lumineuse d'environ un Watt, alors qu'une ampoule ne donnera que 0,1W pour le même courant. L'utilisation plus répandue des LED pour l'éclairage aura un impact extrêmement important pour les économies d'énergie et l'environnement. A l'heure actuelle, elles sont utilisées dans nos télécommandes, les panneaux d'affichages, les feux de signalisation.

    Depuis quelques temps les diodes rouges, orange et vertes existent. La diode bleue, plus récemment apparue a connue une histoire insolite. En 1974, des ingénieurs se penchent sur le problème de la réalisation d'une telle diode, et trouvent qu'un matériau possède le gap d'énergie adéquat (3-4 eV) : le Nitrure de Gallium (GaN). Ils vont alors chercher à le doper... pendant 10 ans... sans succès. En 1984, un grand théoricien soutient, démonstration à l'appui, qu'il n'est théoriquement pas possible de doper un tel semi-conducteur. Toutes les équipes arrêtent alors progressivement leurs recherches sur le sujet... toutes, sauf une. Celle du Dr. Nakamura (qui sans doute n'avait pas lu l'article de l'éminent théoricien) de la société Japonaise Nichia. En 1993, il trouve que le Magnésium (Mg) dope le Nitrure de Gallium ! Dix ans après, sa découverte a révolutionné le marché de l'optoélectronique. En effet, avec les autres couleurs de LED, il est à présent possible de réaliser d'immenses écrans publicitaires...

    Diodes lasers

    Etudions à présent l'émission stimulée. Nous avons vu que le semi-conducteur pouvait absorber un photon, qu'il pouvait également en émettre s'il possède un électron dans sa bande de conduction. En 1917, Albert Einstein s'aperçoit qu'il manque un mécanisme dans cette description de l'interaction entre la lumière et la matière. Par une démarche purement théorique, il va découvrir un nouveau phénomène : l'émission stimulée ( Figure 16).

    Dans l'émission stimulée, l'électron est dans l'état excité. Arrive alors un photon, qui va stimuler la désexcitation de l'électron. Cette désexcitation va naturellement s'accompagner de l'émission d'un autre photon, dit photon stimulé. Si on se trouve dans un matériau où beaucoup d'électrons sont excités, un photon va alors pouvoir donner 2, puis 4, puis 8 ... photons ! Ce phénomène est appelé l'amplification optique.

    figure16

    Diagramme des mécanismes d'absorption, d'émission spontanée, et d'émission stimulée

    Il est alors possible de réaliser un LASER. Pour cela, il suffit de placer deux miroirs aux extrémités de l'amplificateur optique. La lumière va être amplifiée lors d'un premier passage, une partie va être émise en dehors de la cavité, l'autre partie va être réfléchie et refaire un passage dans le milieu amplificateur. La même chose se produit sur le deuxième miroir. Si après un tour on a plus d'énergie qu'au départ, nous sommes face à un phénomène d'avalanche où le nombre de photons créés va croître très rapidement. Le système se met à osciller, c'est l'oscillation LASER.

    John von Neumann, l'inventeur de l'ordinateur, prévoit que les semi-conducteurs devraient permettre de réaliser des lasers. En effet en partant d'un puits quantique et en y plaçant beaucoup d'électrons et de trous, nous allons obtenir notre milieu amplificateur. En plaçant des miroirs aux extrémités du puits quantique, on obtient alors un laser ( Figure 17). Le laser à semi-conducteur sera découvert 50 ans après, et par 3 laboratoires différents (General Electric, IBM et Bell Labs) en l'espace de 10 heures !

    figure17

    Schéma d'une diode laser. Le milieu à gain est constitué par la jonction P-N. A ses extrémités des miroirs forment la cavité, et laissent sortir un faisceau laser unidirectionnel

    L'intérêt du laser à semi-conducteur est qu'on peut concentrer toute la puissance lumineuse sur un fin pinceau lumineux. Là encore, les applications sont nombreuses : pointeurs, lecteur de CD, télécommunications... Revenons un instant sur l'importance des matériaux émettant dans le bleu (le Nitrure de Gallium). Le laser bleu va en effet avoir des retombées importantes dans le domaine des disques lasers. Le principe du lecteur de disque est d'envoyer un laser sur la surface du disque qui réfléchit (ou non) la lumière, lumière qui est alors lue par un détecteur quantique. La surface du disque est criblée de trous stockant les bits d'information. Il se trouve que la dimension minimale d'un faisceau laser correspond à la longueur d'onde qu'il émet. Ainsi la tâche d'un laser rouge est de 0,8 mm, tandis que celle d'un faisceau bleu est de 0,4 mm. On pourra donc lire 4 fois plus d'information avec un laser bleu Les diodes bleues vont donc progressivement (et rapidement) remplacer les diodes rouges des lecteurs de disques.

    La lumière d'un laser va également pouvoir être envoyée à l'intérieur d'une fibre optique, qui est une structure guidant la lumière au cSur d'un guide en verre (silice) de 4 mm de diamètre. La fibre optique permet alors de transporter énormément d'information extrêmement rapidement. A l'heure actuelle, les fibres optiques permettent d'envoyer en un dixième de seconde tout le contenu de l'Encyclopedia Universalis à 3000 km ! Cette révolution technologique, fruit de l'optoélectronique, est à la base du succès d'Internet.

    Les nouvelles frontières

    L'optoélectronique est un des domaines scientifiques les plus effervescents à l'heure actuelle, et de nombreuses technologies encore balbutiantes semblent très prometteuses dans un proche future : il s'agit par exemple des cristaux photoniques, des oscillateurs paramétriques optiques, de la nano-optique,... Nous nous intéresserons ici aux nouvelles longueurs d'ondes ainsi qu'au domaine des attosecondes.

    Les ondes Térahertz

    L'optoélectronique investit aujourd'hui de nouvelles longueurs d'onde, et ne se cantonne plus au domaine du visible et de l'infrarouge. Ces ondes appartiennent à la famille des ondes électromagnétiques ( Figure 18), qui renferme également, les ondes radio, les ondes radars et micro-ondes,... Entre les ondes radio et les ondes optiques, se trouve le domaine des ondes dites Térahertz (THz), qui jusqu'à peu ne disposaient pas de sources efficaces. L'optoélectronique développe actuellement de nouvelles sources lasers dans ce domaine, resté pendant longtemps une terra incognita.

    figure18

    Le spectre des ondes électromagnétiques

    De telles sources permettront de développer de nouveaux systèmes de sécurité, car ils permettront notamment de voir à travers les vêtements. En effet, même au travers de matériaux opaques, les photons pénètrent, sur une longueur de quelques longueurs d'onde. Dans le cas des ondes Térahertz, la longueur d'onde est de 300 mm, le photon va pénétrer un matériau opaque sur plusieurs millimètres ! L'onde Térahertz pourra ainsi traverser les vêtements. La Figure 19 montre comment un couteau caché par un journal a pu être détecté par de l'imagerie Térahertz.

    figure19

    Image d'une scène dans le visible (à gauche) et dans les Térahertz (à droite). La grande longueur d'onde des ondes Térahertz permet de traverser les vêtements et les journaux.

    (Jefferson Lab : www.jlab.org)

    Les attosecondes

    Une autre percée réalisée par l'optoélectronique concerne l'étude des temps très courts. Le domaine des attosecondes est désormais accessible à l'expérience. Une attoseconde ne représente que 0,000 000 000 000 000 001 seconde (10-18 seconde)! Il y a autant d'attosecondes dans une seconde que de secondes écoulées depuis la création de l'univers.

    Pour créer des impulsions aussi courtes, il faut des ondes ayant des fréquences très élevées. L'impulsion la plus courte qu'on puisse faire avec une onde consistera à ne prendre qu'une seule oscillation de l'onde. L'optoélectronique nous propose des techniques qui permettent de ne découper qu'une seule oscillation du champ électromagnétique. Si on prend de la lumière visible (de fréquence 1015 Hz), on est capable de découper une tranche de 10-15 seconde (une femtoseconde). On peut aujourd'hui aller encore plus loin, et atteindre le domaine des attosecondes.

    La Figure 20 montre en fonction du temps les plus petites durées atteignables par l'électronique et par l'optoélectronique. L'électronique, ayant des fréquences limitées à quelques gigahertz (GHz) est actuellement limitée, tandis que l'optique, avec des photons aux fréquences bien plus élevées permet de sonder des durées bien plus faibles.

    figure20

    Evolution des plus petites durées mesurables par l'électronique et l'optoélectronique dans les 40 dernières années

    L'électron met environ 150 attosecondes pour « faire le tour » de l'atome d'Hydrogène. Nous devrions donc avoir d'ici peu les techniques permettant d'observer ce mouvement ! On retrouve le cercle vertueux que nous avions évoqué au début : la science fondamentale a fourni des technologies, et ces technologies, en retour, fournissent aux sciences fondamentales des possibilités d'observer de nouveaux domaines du savoir et de la connaissance de l'univers.

    Université René Descartes Paris-5

    Partenaire de l'université de tous les savoirs 2001-2002 Accueil dans ses locaux les conférences

    CERIMES

    Portail de ressources et d'informations sur les multimédias de l'enseignement supérieur

    UTLS sur Lemonde.fr

    Le monde

    la conférence du 12/07/05 en mp3 (audio)

    partenaire des UTLS

    la conférence du 12/07/05 en ogg (audio)

    diffuse en audio les conférences en partenariat avec le CERIMES

    Le texte de la conférence du 12/07/05 en pdf

    Dans la même collection

    Sur le même thème