Jean-Yves Welschinger - Polynômes aléatoires et topologie
Le lieu des zéros d'un polynôme à coefficients réels de n variables est (en général) une hypersurface de l'espace affine réel de dimension n dont la topologie dépend du choix du polynôme. A
Mon compte
Pas encore inscrit ?
Le lieu des zéros d'un polynôme à coefficients réels de n variables est (en général) une hypersurface de l'espace affine réel de dimension n dont la topologie dépend du choix du polynôme. A
In a Riemannian 3-manifold, minimal surfaces are critical points of the area functional and can be a useful tool to understand the geometry and the topology of the ambient manifold. The aim of
In a Riemannian 3-manifold, minimal surfaces are critical points of the area functional and can be a useful tool to understand the geometry and the topology of the ambient manifold. The aim of
The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the
The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the
The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also
The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en