Cours

# Laurent Mazet - Some aspects of minimal surface theory (Part 1)

Réalisation : 14 juin 2016 Mise en ligne : 14 juin 2016
• document 1 document 2 document 3
• niveau 1 niveau 2 niveau 3
• audio 1 audio 2 audio 3
Descriptif

In a Riemannian 3-manifold, minimal surfaces are critical points of the area functional and can be a useful tool to understand the geometry and the topology of the ambient manifold. The aim of these lectures is to give some basic definitions about minimal surface theory and present some results about the construction of minimal surfaces in Riemannian 3-manifolds.

Thèmes
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation), Pauline Martinet (Réalisation)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource:
I_Fourier. (2016, 14 juin). Laurent Mazet - Some aspects of minimal surface theory (Part 1). [Vidéo]. Canal-U. https://www.canal-u.tv/60151. (Consultée le 28 mai 2022)
Contacter
Documentation

## Dans la même collection

• Conférence
00:47:36
Jeff Viaclovsky - Deformation theory of scalar-flat Kahler ALE surfaces
Viaclovsky
Jeff

I will discuss a Kuranishi-type theorem for deformations of complex structure on ALE Kahler surfaces, which will be used to prove that for any scalar-flat Kahler ALE surface, all small deformations of

• Conférence
00:50:01
Robert Haslhofer - The moduli space of 2-convex embedded spheres

We investigate the topology of the space of smoothly embedded n-spheres in R^{n+1}, i.e. the quotient space M_n:=Emb(S^n,R^{n+1})/Diff(S^n). By Hatcher’s proof of the Smale conjecture, M_2 is

• Conférence
00:52:50
Burkhard Wilking - Manifolds with almost nonnegative curvature operator
Wilking
Burkhard

We show that n-manifolds with a lower volume bound v and upper diameter bound D whose curvature operator is bounded below by $-\varepsilon(n,v,D)$ also admit metrics with nonnegative curvature

• Conférence
01:03:03
Jean-Marc Schlenker - Anti-de Sitter geometry and polyhedra inscribed in quadrics
Schlenker
Jean-Marc

Anti-de Sitter geometry is a Lorentzian analog of hyperbolic geometry. In the last 25 years a number of connections have emerged between 3-dimensional anti-de Sitter geometry and the geometry of

• Conférence
00:58:49
Stéphane Saboureau - Sweep-outs, width estimates and volume
Sabourau
Stéphane

Sweep-out techniques in geometry and topology have recently received a great deal of attention, leading to major breakthroughs. In this talk, we will present several width estimates relying on min-max

• Conférence
00:48:44
Igor Belegradek - Smoothness of Minkowski sum and generic rotations
Igor

I will discuss whether the Minkowski sum of two compact convex bodies can be made smoother by a generic rotation of one of them.  Here "generic" is understood in the sense of Baire category. The main

• Conférence
01:00:04
Greg McShane - Volumes of hyperbolics manifolds and translation distances

Schlenker and Krasnov have established a remarkable Schlaffli-type formula for the (renormalized) volume of a quasi-Fuchsian manifold. Using this, some classical results in complex analysis and Gromov

• Conférence
01:01:45
David Gabai - Maximal cusps of low volume
Gabai
David

With Robert Haraway, Robert Meyerhoff, Nathaniel Thurston and Andrew Yarmola. We address the following question. What are all the 1-cusped hyperbolic 3-manifolds whose maximal cusps have low volume?

## Sur le même thème

• Cours
01:23:37
Laurent Mazet - Some aspects of minimal surface theory (Part 2)

In a Riemannian 3-manifold, minimal surfaces are critical points of the area functional and can be a useful tool to understand the geometry and the topology of the ambient manifold. The aim of

• Cours
01:02:08
Jean-Yves Welschinger - Polynômes aléatoires et topologie
Welschinger
Jean-Yves

Le lieu des zéros d'un polynôme à coefficients réels de n variables est (en général) une hypersurface de l'espace affine réel de dimension n dont la topologie dépend du choix du polynôme. A

• Cours
01:23:41
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 4)

L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en

• Cours
01:31:28
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 2)
Viterbo
Claude

L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en

• Cours
01:18:11
Serguei Ivachkovitch - Method of pseudoholomorphic curves and applications (Part 4)
Ivachkovitch
Sergueï

The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the

• Cours
01:05:39
Serguei Ivachkovitch - Method of pseudoholomorphic curves and applications (Part 3)
Ivachkovitch
Sergueï

The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the

• Cours
01:21:44
Serguei Ivachkovitch - Method of pseudoholomorphic curves and applications (Part 1)
Ivachkovitch
Sergueï

The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the