Notice
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 2)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en donner un aperçu à la fois pour démontrer des résultats classiques, comme la conjecture d’Arnold, et pour des résultats nouveaux.
The use of methods from the Sheaf Theory (Kashiwara-Schapira) was developped recently by Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara and Schapira. We will try to give an insight of that, in order to prove classical results, such as the Arnold conjecture, and to obtain new results.
Thème
Dans la même collection
-
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 2)
LalondeFrançoisThe first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
-
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 1)
TelemanAndreiThis series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
-
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 4)
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
-
Serguei Ivachkovitch - Method of pseudoholomorphic curves and applications (Part 1)
IvachkovitchSergueïThe method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the
-
Alexandre Sukhov - J-complex curves: some applications (Part 4)
SukhovAlexandreWe will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative
-
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 4)
LalondeFrançoisThe first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
-
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 1)
LalondeFrançoisThe first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
-
Alexandre Sukhov - J-complex curves: some applications (Part1)
SukhovAlexandreWe will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative
-
-
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 4)
TelemanAndreiThis series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
-
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 3)
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
-
Alexandre Sukhov - J-complex curves: some applications (Part 3)
SukhovAlexandreWe will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative
Avec les mêmes intervenants et intervenantes
-
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 1)
ViterboClaudeL’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions
BamlerRichard H.We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow.
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
Burkhardt-GuimPaulaWe propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
T. Ozuch - Noncollapsed degeneration and desingularization of Einstein 4-manifolds
OzuchTristanWe study the noncollapsed singularity formation of Einstein 4-manifolds. We prove that any smooth Einstein 4-manifold close to a singular one in a mere Gromov-Hausdorff (GH) sense is the result
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition
TewodroseDavidPresentation of a joint work with G. Carron and I. Mondello where we study Kato limit spaces.
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LaiYiWe find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
A. Mondino - Time-like Ricci curvature bounds via optimal transport
MondinoAndreaThe goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LesourdMartinThe study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PeralesRaquelThéorèmes récents de convergence plane intrinsèque