Canal-U

Mon compte
Inria

Stein-Malliavin method for discrete alpha stable point processes (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)


Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/inria/embed.1/stein_malliavin_method_for_discrete_alpha_stable_point_processes_workshop_erc_nemo_processus_ponctuels_et_graphes_aleatoires_unimodulaires.50443?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Auteur(s) :
Decreusefond Laurent

Producteur Canal-U :
Inria
Contacter le contributeur
J’aime
Imprimer
partager facebook twitter Google +

Stein-Malliavin method for discrete alpha stable point processes (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)

The notion of discrete alpha-stable point processes generalizes to point processes the notion of stable distribution. It has been introduced and studied by Davydov, Molchanov and Zuyev a few years ago. Their stability property leaves a large degree of variability in the choice of their driving characteristics but enforces a rich mathematical structure. We show how to build a Dirichlet-Malliavin structure for these processes and we apply this framework to several limit theorems. Some known results for Poisson point processes appear as corollaries of the present theorems.

  •  
  •  
    Date de réalisation : 20 Mars 2019
    Lieu de réalisation : Paris
    Durée du programme : 43 min
    Classification Dewey : Théorie des graphes. Construction des graphes
  •  
    Catégorie : Conférences
    Niveau : niveau Doctorat (LMD), Recherche
    Disciplines : Mathématiques et informatique, Cancérologie
    Collections : ERC Nemo, Workshop Processus ponctuels et graphes aléatoires unimodulaires (20-22 mars 2019)
    ficheLom : Voir la fiche LOM
  •  
    Auteur(s) : Decreusefond Laurent
    producteur : INRIA (Institut national de recherche en informatique et automatique)
    Editeur : INRIA (Institut national de recherche en informatique et automatique) , Baccelli François
  •  
    Langue : Anglais
    Mots-clés : processus ponctuels, graphes aléatoires
 

commentaires


Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)
 

Dans la même collection

 Point processes, cost and the growth of rank for locally compact groups (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Spectral embedding for graph classification (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Strict monotonicity of percolation thresholds under covering maps (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Emergence of extended states at zero in the spectrum of sparse random graphs (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 On the modified Palm version (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Entropic inequalities for unimodular networks (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires
 A notion of entropy for limits of sparse marked graphs (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Comments and problems regarding large graphs. (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Sampling cluster point processes: a review (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Absence of percolation for Poisson outdegree-one graphs (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Subdiffusivity of random walks on random planar maps, via stationarity (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Central Limit theorem for quasi-local statistics of point processes with fast decay of correlations (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 Eternal family trees and dynamics on unimodular random graphs (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 On the notion of dimension of unimodular discrete spaces (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
 A stable marriage between order and disorder (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)
FMSH
 
Facebook Twitter Google+
Mon Compte