Conférence
Chapitres
Notice
Langue :
Français
Crédits
UTLS - la suite (Réalisation), UTLS - la suite (Production), André Syrota (Intervention)
Conditions d'utilisation
Droit commun de la propriété intellectuelle
DOI : 10.60527/pzsp-jq26
Citer cette ressource :
André Syrota. UTLS. (2005, 7 juillet). Physique et médecine : l'imagerie médicale , in la physique et ses applications. [Vidéo]. Canal-U. https://doi.org/10.60527/pzsp-jq26. (Consultée le 19 mars 2024)

Physique et médecine : l'imagerie médicale

Réalisation : 7 juillet 2005 - Mise en ligne : 6 juillet 2005
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

L'imagerie médicale a sans aucun doute entraîné ces vingt dernières années une transformation radicale dans la façon d'aborder le diagnostic et le suivi thérapeutique. Un diagnostic de localisation d'une lésion cérébrale qui nécessitait un examen clinique long et minutieux par un neurologue expérimenté se fait aujourd'hui avec une précision millimétrique grâce au scanner ou à l'imagerie par résonance magnétique (IRM). Là où le maître entouré de ses élèves démontrait que la lésion ischémique ou tumorale devait siéger au niveau de tel noyau du thalamus (la vérification ayant lieu malheureusement souvent quelques semaines plus tard sur les coupes de cerveau), le neuroradiologue parvient au même résultat en quelques minutes. On pourrait multiplier les exemples ; là où le cardiologue se fiait à son auscultation et à des clichés de thorax, l'échocardiographie montre en temps réel les mouvements des valves cardiaques et la dynamique de la contraction ventriculaire, la scintigraphie myocardique précise la localisation des zones de myocarde ischémique et les anomalies de sa contraction ; demain l'IRM permettra de voir la circulation coronaire et le tissu myocardique et remplacera l'angiographie par voie artérielle. On pourrait encore citer l'échographie en obstétrique, en hépatologie ou en urologie, la scintigraphie dans la détection des lésions de la thyroïde, des métastases osseuses ou de l'embolie pulmonaire. Aujourd'hui la tomographie par émission de positons (TEP) est en train de devenir la méthode incontournable en cancérologie, non pas tant pour le diagnostic du cancer que pour en préciser l'extension, l'existence de métastases, l'évolution sous traitement après chimiothérapie, chirurgie ou radiothérapie ou encore l'apparition de récidives ou de métastases tardives. Au milieu du 19ème siècle, l'inventeur de la médecine expérimentale, Claude Bernard indiquait à Ernest Renan qui l'a relaté, que « l ‘on ne connaîtrait la physiologie que le jour où l'on saura décrire le voyage d'un atome d'azote depuis son entrée dans l'organisme jusqu'à sa sortie». Ce qui était totalement hors de portée du savant de cette époque, connaît en ce début du 21ème siècle une pleine réalisation grâce à une série d'avancées techniques rendues d'abord possibles par la radioactivité et aussi dans une certaine mesure par l'IRM et de toutes façons par la combinaison de plusieurs méthodes lorsqu'on aborde la pathologie. C'est certainement dans la description du voyage fait par le médicament dans le corps que réside aujourd'hui une des avancées les plus intéressantes dans le domaine pharmaceutique. Mais nous verrons aussi que quand nous écoutons, parlons, bougeons, réfléchissons... certaines aires de notre cerveau s'activent. Cette activation électrique et chimique des neurones se traduit par une augmentation du débit sanguin local dans les régions cérébrales concernées par cette activation. La TEP d'abord puis en utilisant les mêmes principes physiologiques, l'IRM aujourd'hui permet de produire des images sensibles au débit sanguin et ce, sans recours à l'injection d'une substance ou molécule particulière. Il ne peut s'agir dans cette conférence de décrire les principes physiques, les indications de toutes ces méthodes et les résultats qu'elles permettent d'obtenir en clinique. Par contre la comparaison de l'origine et de l'évolution de trois de ces méthodes, la radiologie, la médecine nucléaire et l'imagerie par résonance magnétique nucléaire est intéressante. La perspective historique permet en effet de mieux comprendre la genèse, l'évolution et les indications de ces différentes méthodes qui ont toutes leur point de départ dans la physique.

Intervention
Thème
Documentation

Transcription* de la 585ème conférence donnée le 7 juillet 2005 à l'Université de tous les savoirs revue par l'auteur

Physique et médecine : l'imagerie médicale
par André Syrota

L'imagerie médicale a sans aucun doute entraîné ces vingt dernières années une transformation radicale dans la façon d'aborder le diagnostic et le suivi thérapeutique. Un diagnostic de localisation d'une lésion cérébrale qui nécessitait un examen clinique long et minutieux par un neurologue expérimenté se fait aujourd'hui avec une précision millimétrique grâce au scanner ou à l'imagerie par résonance magnétique (IRM). Là où le maître entouré de ses élèves démontrait que la lésion ischémique ou tumorale devait siéger au niveau de tel noyau du thalamus (la vérification ayant lieu malheureusement souvent quelques semaines plus tard sur les coupes de cerveau), le neuroradiologue parvient au même résultat en quelques minutes. On pourrait multiplier les exemples ; là où le cardiologue se fiait à son auscultation et à des clichés de thorax, l'échocardiographie montre en temps réel les mouvements des valves cardiaques et la dynamique de la contraction ventriculaire, la scintigraphie myocardique précise la localisation des zones de myocarde ischémique et les anomalies de sa contraction ; demain l'IRM permettra de voir la circulation coronaire et le tissu myocardique et remplacera l'angiographie par voie artérielle. On pourrait encore citer l'échographie en obstétrique, en hépatologie ou en urologie, la scintigraphie dans la détection des lésions de la thyroïde, des métastases osseuses ou de l'embolie pulmonaire. Aujourd'hui la tomographie par émission de positons (TEP) est en train de devenir la méthode incontournable en cancérologie, non pas tant pour le diagnostic du cancer que pour en préciser l'extension, l'existence de métastases, l'évolution sous traitement après chimiothérapie, chirurgie ou radiothérapie ou encore l'apparition de récidives ou de métastases tardives.
Au milieu du XIXème siècle, l'inventeur de la médecine expérimentale, Claude Bernard, indiquait à Ernest Renan qui l'a relaté, que « l'on ne connaîtrait la physiologie que le jour où l'on saura décrire le voyage d'un atome d'azote depuis son entrée dans l'organisme jusqu'à sa sortie ». Ce qui était totalement hors de portée du savant de cette époque, connaît, en ce début du XXIe siècle une pleine réalisation grâce à une série d'avancées techniques rendues d'abord possibles par la radioactivité et aussi dans une certaine mesure par l'IRM et de toute façon par la combinaison de plusieurs méthodes lorsqu'on aborde la pathologie. C'est certainement dans la description du voyage fait par le médicament dans le corps que réside aujourd'hui une des avancées les plus intéressantes dans le domaine pharmaceutique. Mais nous verrons aussi que quand nous écoutons, parlons, bougeons, réfléchissons... certaines aires de notre cerveau s'activent. Cette activation électrique et chimique des neurones se traduit par une augmentation du débit sanguin local dans les régions cérébrales concernées par cette activation. La TEP d'abord, puis en utilisant les mêmes principes physiologiques, l'IRM aujourd'hui, permettent de produire des images sensibles au débit sanguin et ce, sans recours à l'injection d'une substance ou molécule particulière.
Il ne peut s'agir dans cette conférence de décrire les principes physiques, les indications de toutes ces méthodes et les résultats qu'elles permettent d'obtenir en clinique. Par contre, la comparaison de l'origine et de l'évolution de trois de ces méthodes, la radiologie, la médecine nucléaire et l'imagerie par résonance magnétique nucléaire est intéressante. La perspective historique permet en effet de mieux comprendre la genèse, l'évolution et les indications de ces différentes méthodes qui ont toutes leur point de départ dans la physique.

Tous les champs de la physique sont impliqués dans la médecine, pour certains en imagerie, pour d'autres en thérapeutique :
- l'électromagnétisme : imagerie gamma, imagerie X, proche infrarouge, radiofréquences, radiothérapie, laser, électrocardiographie, magnétoencéphalographie, potentiels de membrane, potentiels d'action
- les ultrasons : imagerie (échographie)
- la physique nucléaire et la physique des particules : imagerie (électrons, positons), thérapie (électrons, protons, particules alpha, ions lourds)
- la mécanique des fluides : écoulements sanguins, rhéologie
- la physique de la matière condensée
Les applications de la physique à la médecine ont débuté au XVIIème siècle avec les travaux du philosophe, scientifique et mathématicien, René Descartes (1596-1650) sur la vision. Dans La Dioptrique (1637) il s'intéresse à la théorie de la lumière, de l'Sil et de la vision.
Walther Hermann Nernst (1864-1941), physicien et chimiste allemand, a mené de nombreuses recherches dans les domaines de l'électrochimie, la thermodynamique, la chimie du solide et la photochimie. Ces découvertes incluent également l'équation qui porte son nom et qui intervient dans le calcul des potentiels de membrane.
William Harvey (1578-1657), médecin et physiologiste anglais, met en évidence la circulation du sang dans le corps humain. En 1628 Harvey publie à Francfort, Exentération Anatomica de Motu Cordis et Sanguinis in animalibus. Dans cet ouvrage qui marqua son époque, il explique en dix-sept chapitres son interprétation de ses constatations expérimentales et anatomiques et donne un compte-rendu précis du fonctionnement de la grande circulation.
Henry Philibert Gaspard Darcy (1803-1858), hydraulicien français, a démontré la loi qui porte son nom et qui explique la filtration des liquides, notamment les fontaines de Dijon.

Les composants du corps sont des objets physiques et peuvent être étudiés et manipulés comme le font les physiciens des objets physiques. Les outils de la biologie sont devenus des outils lourds et certains sont communs à ceux de la physique. Jusqu'à il y a une dizaine d'année la biologie pouvait se faire sur le coin d'une paillasse. Aujourd'hui, le séquençage du génome, l'imagerie, tous les outils de la post-génomique, nécessitent le développement d'une biologie lourde comme il y a une physique lourde qui utilise les grands accélérateurs, le CERN à Genève. Les méthodes d'imagerie qui permettent de voir le fonctionnement du cerveau nécessitent un outillage très lourd.
Le défi actuel est la prise en compte de la complexité des systèmes vivants. Les sciences du vivant ne sont plus simplement de la biologie ou de la médecine, elles comprennent de la biologie, de la chimie, de la physique, des mathématiques, de l'informatique.

Avant de nous intéresser au cerveau proprement dit, n'oublions pas que Sigmund Freud dans "De l'esquisse d'une psychologie scientifique" (1895, in La naissance de la psychanalyse) a toujours cru que les mécanismes cognitifs des phénomènes mentaux normaux et pathologiques pourraient s'expliquer par l'étude rigoureuse des systèmes cérébraux.
Depuis une quinzaine d'année, les progrès de l'imagerie ont permis de grandes avancées dans l'étude des sciences cognitives.
- Posner M. I., Petersen S. E., Fox P. T., Raichle M. E. (1988), Localization of cognitive operations in the human brain, Science, Vol. 240, pp. 1627-1631. (Localisation des opérations cognitives dans le cerveau humain.)
- Andreasen, N., «Linking Mind and Brain in the Study of Mental Illness : A project for a Scientific Psychopathology», Science, No 275, mars 1997, pp. 1562-87. (Lier le cerveau et l'esprit pour l'étude des maladies mentales.)
- Raichle, M.E., "Imaging the mind" in Seminars in Nuclear Medicine 28 : (4) 278 - 289, 1998. (L'imagerie de l'esprit.)
- Posner, M.I. (2003). Imaging a science of mind. Trends in Cognitive Sciences, 7 :10:450-453. (L'imagerie d'une science de l'esprit.)
- Greene, J.D., Sommerville, R.B., Nystrom, L.E., Darley, J.M., & Cohen, J.D. (2001). An fMRI investigation of emotional engagement in moral Judgment. Science, Vol. 293, Sept. 14, 2001, 2105-2108. (L'investigation de l'engagement émotionnel dans le jugement moral.)

Historique

La physique nucléaire : des rayons X et la radioactivité à la radiologie
Le soir du 8 novembre 1895, Wilhelm Conrad Röntgen (1845-1923) observe qu'à la décharge d'un tube, complètement enrobé de carton noir, scellé pour en exclure toute lumière et ceci dans une chambre noire, un carton couvert d'un côté de barium platino-cyanide devient fluorescent lorsqu'il est frappé par les rayons émis du tube, et ce jusqu'à une distance de deux mètres. Lors d'expériences subséquentes, il place divers objet entre une plaque photographique et la source de rayonnement et il se rend compte qu'ils ont une transparence variable. Il expérimente, le 22 décembre 1895, avec la main de son épouse placée sur le parcours des rayons. Au développement, il s'aperçoit que l'image est en fait l'ombre des os de la main de son épouse, son alliance y étant visible. Les os sont entourés d'une pénombre qui représente la chair de la main, la chair est donc plus perméable aux rayons. À la suite d'autres expériences, Röntgen constate que les nouveaux rayons sont produits par l'impact des rayons cathodiques sur un objet matériel. Parce que leur nature est encore inconnue, il leur donne le nom de « rayons X ».
Le 28 décembre, il envoie la première communication indiquant que l'on doit considérer que les rayons X proviennent de la zone de la paroi du tube de verre qui est la plus fluorescente. Il reçut pour cela le tout premier prix Nobel de physique en 1901 après avoir reçu la Médaille Rumford en 1896.
Le 20 janvier 1895, Henri Poincaré montre à Antoine Henri Becquerel (1852-1908) la première radiographie que lui a envoyé Röntgen. Il suggère que les substances fluorescentes pourraient émettre des rayons X. Le 24 février, il constate l'apparition d'un faible noircissement d'un film recouvert de sulfate double d'Uranium exposé pendant une journée au soleil. Quatre jours plus tard, le noircissement s'est intensifié. Henri Becqurel obtient les mêmes résultats après une exposition de cinq heures au soleil ou de cinq heures à l'obscurité. Le 23 mars, il observe le même noircissement avec des sels d'Uranium non fluorescents. Le 18 mai, il en conclut que le matériau émet son propre rayonnement sans nécessiter une excitation par de la lumière. L'effet n'est donc pas dû à la fluorescence mais à une propriété spécifique de l'Uranium. C'est la découverte de la radioactivité naturelle. Les travaux d'Henri Becquerel lui valent la Médaille Rumford en 1900.
Les découvertes en physique se succèdent rapidement dans les années qui suivent.
En 1899, Ernest Rutherford (1871-1937) découvre la transmutation du Thorium et la décroissance exponentielle, ce qui lui permet d'identifier les particules alpha. Ces travaux sur les rayonnements alpha et bêta, et la découverte que la radioactivité s'accompagne d'une désintégration des éléments, lui valent un prix Nobel de Chimie en 1908. C'est aussi lui qui a mis en évidence l'existence d'un noyau atomique, dans lequel étaient réunies toute la charge positive et presque toute la masse de l'atome, et qui a réussi la toute première transmutation artificielle.
À cette époque, une étudiante, Marie Curie, épouse de son collègue Pierre Curie, choisit comme sujet de thèse l'étude de ce nouveau type de rayonnement. Elle confirme en quelques mois que ce rayonnement est une propriété de plusieurs éléments chimiques, et baptise cette propriété « radioactivité ». En 1898 Pierre et Marie Curie découvrent le Polonium et le Radium.
En 1903, Henri Becquerel, Pierre et Marie Curie partagent le Prix Nobel de physique pour leur contribution extraordinaire à la découverte de la radioactivité spontanée et leur étude des rayonnements émis.
En 1911, Rutherford découvre le noyau atomique. Il avait observé qu'en bombardant une fine feuille de mica avec des particules alpha, on obtenait une déflexion de ces particules. Il émit alors l'hypothèse qu'au centre de l'atome devait se trouver un « noyau » contenant presque toute la masse et toute la charge positive de l'atome, les électrons déterminant en fait la taille de l'atome.
Il est intéressant de noter que les premiers effets des rayons X, notamment sur les lésions cutanées, sont immédiatement décrits. Dès 1896, les premiers effets des rayons X sont publiés dans le Lancet, à partir de mi-1896 les essais d'irradiation de lésions cutanées. En 1900-1901, Pierre Curie et Henri Becquerel décrivent les réactions cutanées produites par le dépôt de Radium sur leur propre peau. Le D. Danlos soigne des lésions de lichen à l'Hôpital Saint-Louis avec du Radium donné par Pierre Curie. Ces soins conduisent en 1909 à la fondation de l'Institut du Radium.

La physique des particules : les positons
Le positon a été découvert par C. D. Anderson en 1933 [C.D. Anderson, "The Positive Electron", Phys. Rev. 43, 491 (1933)] suite de la prédiction totalement théorique quant à l'existence d'électrons positifs de Dirac.
Irène et Frédéric Joliot mettent en évidence la même année des électrons positifs de matérialisation et montrent l'annihilation de la paire électron positif - électron négatif. Ils mettent en évidence également les électrons de transmutation. C'est la découverte de la radioactivité artificielle.
Les Comptes rendus de l'Académie des sciences du 19 juin 1933 annoncent que la transmutation de l'aluminium peut se faire avec émission soit d'un proton soit d'un neutron accompagné d'un électron positif.
L'accueil est cependant sceptique chez la majorité des participants du 7e congrès Solvay en octobre 1933. Niels Borg y a présenté que « si vraiment comme le suppose M. Joliot, les positons viennent de l'intérieur du noyau, les circonstances seront fort semblables à celles des rayons bêta ».
À l'occasion de la conférence internationale de physique à Londres en 1934, le journal _Le Soir_ citait Frédéric Joliot : « Il est très possible, si nos expériences réussissent, que nous puissions fabriquer une substance dont les applications médicales obtiendront les mêmes effets que le Radium. » Il se situait dans la perspective des travaux de Marie Curie.
Le Petit Journal rapportait : « Pour le traitement du cancer, Irène Joliot-Curie et son mari posséderaient la formule du radium artificiel. On laisse entendre à cette occasion que la fille de Mme Curie pourrait bien recevoir le prix Nobel. »
La découverte de la radioactivité sera à la base de toute l'imagerie, comme la découverte de la radioactivité artificielle en janvier 1934 par Irène et Frédéric Joliot-Curie sera à la base de la médecine nucléaire.
En janvier 1934, la radioactivité artificielle est découverte par la vérification de l'émission de positons dans la chambre de Wilson. La particule alpha est capturée par un noyau d'aluminium qui se transforme en un noyau de "phosphore inconnu" avec émission d'un neutron. Ce "phosphore inconnu" est radioactif et se transforme en un noyau de Silicium connu avec émission d'un positon.
27Al + alpha -> 30P + n
30 P -> 30Si + positon + nu
Les Comptes rendus de l'Académie des sciences publient le 15 janvier 1934 Un nouveau type de radioactivité et Nature "Artificial Production of a New Kind of Radio-Element."
Nature 1934, 198, 201 "Artificial production of a new kind of radio-elements".
I. Curie and F. Joliot, Un nouveau type de radioactivité, C. R. Acad. Sci. 198 (1934), 254-256 ; Artificial Production of a New Kind of Radio-Element, Nature 133 (1934), 201-202.
Cette découverte est double puisque la radioactivité artificielle implique la découverte de la radioactivité par émission de positons.
Pour utiliser ces résultats en imagerie, il manque encore deux éléments importants : l'instrumentation et le marquage.
En 1930, Ernest Orlando Lawrence (1901-1958), physicien américain, construit le premier cyclotron. Il reçoit le Prix Nobel de physique en 1939 pour l'invention du cyclotron et ses applications en radiochimie.
En 1938, Otto Hahn et Fritz Strassmann découvrirent des traces du baryum, en cherchant des éléments transuraniens dans un échantillon d'uranium qui avait été irradié de neutrons. Cette découverte, annoncée en 1939, constituait la preuve irréfutable, confirmée par le calcul des énergies impliquées dans la réaction, que l'uranium avait bien subi une fission, se divisant en plus petits fragments constitués d'éléments plus légers [O. HAHN AND F. STRASSMANN Berlin-Dahlem. Die Naturwissenschaften 27, p. 11-15 (January 1939)].
En 1947, Leó Szilárd et Enrico Fermi montrent la divergence de la première pile.
L'autre élément très important, ce sont les travaux de George de Hevesy qui est un savant hongrois, un chimiste qui travaillait, qui voulait faire sa thèse chez Rutherford, à qui Rutherford avait confié un travail pas trop intéressant de séparer des éléments radioactifs et George de Hevesy a eu l'idée d'utiliser ces éléments radioactifs comme traceurs, donc de permettre de suivre à la trace le devenir d'éléments non radioactifs et il en a été largement récompensé par le Prix Nobel en 1943.
En 1912, George de Hevesy (1885-1966) a été récompensé pour ses travaux sur l'utilisation des isotopes comme traceurs dans l'étude des processus chimiques. Il reçoit en 1943 le prix Nobel de chimie pour l'utilisation d'éléments radioactifs comme traceurs
L'ensemble des moyens physiques, instrumentaux et physiologiques sont alors réunis pour aller plus loin dans l'imagerie.
Tous les êtres humains sont constitués de carbone, à 99% de carbone 12 et 1% de carbone 13. Le carbone 11 est un isotope du carbone qui émet des positons. Cet électron positif a un trajet dans la matière de l'ordre du millimètre. Il ne peut donc pas être repéré facilement. Par contre, contrairement aux électrons émis par le carbone 14, l'électron positif est de l'antimatière et il ne peut donc pas exister dans notre univers. Il va rencontrer un électron négatif et ils vont s'annihiler. Leur masse disparaît suivant la relation d'Einstein E=mc2 et deux photons vont apparaître et sortir du cerveau.
Une autre radioactivité, l'émission gamma, notamment celle de l'iode, est également utilisée couramment en médecine nucléaire.
Dans les années 1950 de l'iode 131 était injecté. Il allait dans la thyroïde pour s'incorporer dans les hormones thyroïdiennes qui comprennent chacune quatre atomes d'iode. Un opérateur mesurait avec un compteur Geiger-Müller, en regard du cou du malade, la radioactivité point par point. Il déplaçait la sonde, il remesurait la radioactivité puis il traçait sur la feuille de papier les zones, les iso-contours d'iso-doses. Il obtenait ainsi des images fonctionnelles montrant l'incorporation de l'iode dans l'hormone thyroïdienne de la thyroïde.
L'autre aspect qui a permis le développement important de l'imagerie médicale ces dix dernières années ce sont les progrès de l'informatique. Dans les années 1970-1980, les premiers ordinateurs disponibles à l'hôpital et dans les services de recherche permettaient avec des multi8, de l'intertechnique, et de la mémoire de faire des enregistrements avec des bandes magnétiques. Ces machines étaient tout à fait insuffisantes pour les développements actuels qui consomment une informatique en quantité considérable.
L'étape suivante, a été la possibilité de passage des projections en deux dimensions, à des coupes virtuelles de cerveau. Les travaux de Mansfield, un ingénieur d'IMA, l'ont conduit à un procédé pour reconstruire des images de façon numérique. Simultanément et indépendamment un physicien d'hôpital Allan MacLeod Cormack (1924-1998) qui travaillait au Cap en Afrique du Sud puis ensuite à Boston, a eu l'idée de la formulation mathématique d'une projection, qui est connue sous le nom de transformée de radon. Le scanner X est le début de l'imagerie moderne. Les travaux de Cormack lui ont valu le prix Nobel de médecine en 1979.

L'imagerie

Je vais maintenant vous présenter plusieurs techniques utilisant la radioactivité, la tomographie par émission de positons ou la physique quantique. Ces techniques permettent de voir le "cerveau vivant" ou "living brain" et même le "cerveau pensée" comme on le dit aujourd'hui.
Dans les années 1985, les physiciens ont essayé de produire des images du corps vivant en combinant l'interaction d'un rayonnement. Ils ont observé l'atténuation ou la réflexion de rayonnements électromagnétiques, d'ondes acoustiques, de faisceaux de particules, etc. Les valeurs notées sont ensuite traitées par l'algorithme de rétroprojection filtrée de Cormack-Hounsfield pour obtenir des images.
Aujourd'hui, il reste les rayons gammas, la tomographie par émission de simples photons, la tomographie par émission de positons, les rayons X et le scanner. Les autres rayonnements ont été écartés pour des raisons variées : l'infrarouge ne marche pas très bien, les micro-ondes ont les mêmes effets que les fours du même nom, la résonance paramagnétique électronique nécessite l'injection de radicaux libres, les radiofréquences de l'imagerie par résonance magnétique et l'imagerie d'impédance ne donnent pas beaucoup de résultats. Les ultrasons sont très utilisés mais ils ne s'appliquent pas au cerveau.
La gamma-tomographie mesure l'émission d'un seul photon. En regard de la tête du malade, l'opérateur place une gamma-caméra avec un collimateur, c'est-à-dire du plomb percé de trous, un cristal qui transforme les gammas en photons lumineux, des amplificateurs de brillance. Cette technique est utilisée quotidiennement dans les services de médecine nucléaire du monde entier. Elle permet d'obtenir des images fonctionnelles.
Les recherches menées sur le fonctionnement du cerveau utilisent notamment la tomographie par émission de positons. Dans ce cas, un positon est émis avec une certaine énergie cinétique. Une molécule dont un carbone naturel est remplacé par un carbone radioactif est injectée par voie intraveineuse. Le médicament migre jusqu'à un endroit particulier du cerveau. La radioactivité décroît et on assiste à l'émission d'électrons positifs. Ils perdent leur énergie cinétique en une minute pour les isotopes utilisés. Ils sont au repos jusqu'à ce qu'ils rencontrent un électron libre. La paire positon-négaton s'annihile et deux photons sont émis simultanément, à 180° l'un de l'autre à cause de la conservation de la quantité de mouvement. Ils ont chacun une énergie de 511 keV puisque, selon la réaction d'Einstein, la masse de l'électron positif et celle de l'électron négatif se matérialisent sous forme d'énergie. Les photons sont détectés par les détecteurs autour du sujet. L'arrivée simultanée de deux photons indique qu'à un endroit proche de cette trajectoire il y a eu émission d'un positon.
Quels isotopes sont utilisés ? Les molécules sont formées de carbone, d'oxygène, d'hydrogène, d'azote et pour certaines d'entre elles de phosphore. Le carbone 11 est un émetteur de positon. Il est donc possible de remplacer un carbone 12 par un carbone 11. L'oxygène 15 est un émetteur de positon. Le fluor 18 est intéressant car de nombreux médicaments, tels que des neuroleptiques ou des tranquillisants, contiennent du fluor.
Il n'existe pas d'isotope de l'hydrogène ou du phosphore qui émette un positon. Ils seront cependant utilisés par la résonance magnétique nucléaire qui est une technique complémentaire de la tomographie par émission de positons.
L'inconvénient ou l'avantage des émetteurs de positons c'est qu'ils ont des durées de vie très brèves. La période physique du carbone 11 est de vingt minutes, ce qui veut dire que toutes les vingt minutes la radioactivité décroît de moitié. Pour l'oxygène 15 c'est encore pire ou encore mieux pour le sujet puisque la période, elle, est de deux minutes. L'avantage est qu'il est possible d'injecter beaucoup de radioactivité sans aucun effet. L'inconvénient est qu'il faut produire le carbone 11, par exemple, avec un cyclotron et qu'il faut ensuite l'incorporer dans un médicament, un acide aminé, un sucre, ou une molécule organique. Cette réaction chimique doit être réalisée sur place, en très peu de temps, et le sujet étudié doit se trouver à côté pour que l'injection ait lieu le plus rapidement possible. L'installation nécessaire est évidemment lourde. Au Service hospitalier Frédéric Joliot à Orsay, qui dépend de la direction des sciences du vivant du CEA, il y a l'un des tous premiers cyclotrons qui a été utilisé pour l'imagerie médicale. Il s'agit d'un cyclotron CGR-MeV. Il date de la même époque que les premières caméras à positons avec deux détecteurs qui permettaient de repérer deux photons émis simultanément. Deux ans plus tard, une caméra a été mise au point à Philadelphie puis à l'UCLA, avec des photo-multiplicateurs répartis en couronne autour de la tête du sujet.
L'imagerie médicale nécessite des équipes multi-disciplinaires avec des ingénieurs, des techniciens qui s'occupent du cyclotron, des chimistes, des radiochimistes qui vont incorporer l'isotope (le carbone 11 ou le fluor 18 principalement) dans un précurseur non radioactif pour en faire une molécule radioactive, des informaticiens et des mathématiciens pour transformer la radioactivité mesurée après injection en un paramètre physiologique pour obtenir une série d'images de cerveau.
Aujourd'hui, les caméras qui se trouvent dans le commerce ont une résolution de cinq à six millimètres. Un prototype disponible au CEA et fabriqué par Siemens a une résolution spatiale de deux millimètres et demi alors que la plus petite caméra à positons que nous utilisons pour l'animal est tout à fait remarquable avec une résolution spatiale de 1,6 millimètre, c'est-à-dire le trajet pratiquement du positon. Il ne sera pas possible de descendre plus bas.
L'application la plus importante en ce moment dans le domaine de la tomographie par émission de positons c'est le domaine de la cancérologie. Dans le cadre du plan cancer le gouvernement a décidé d'équiper la France de soixante à soixante-dix caméras à positons réparties sur tout le territoire qui utiliseront un analogue du glucose marqué au fluor 18, le fluoro-desoxy-glucose. Cette molécule a une période de deux heures ce qui permet de la transporter dans les hôpitaux après la fabrication. Nous savons depuis le début du XXème siècle que les tumeurs ont un métabolisme augmenté qui consomme beaucoup d'énergie donc de glucose. La tumeur peut être mise en évidence par des images de la consommation de glucose dans le corps. Il est ainsi possible de repérer les tumeurs et les métastases.
Les applications pour l'étude du cerveau sont infinies puisque théoriquement n'importe quelle molécule peut être marquée selon les projets des médecins, des physiologistes et des pharmacologues. Il est possible d'étudier le métabolisme par la consommation de glucose, mais aussi la synthèse protéique, la consommation d'oxygène, la perfusion cérébrale. Nous savons regarder et quantifier point par point dans le cerveau les récepteurs des neurotransmetteurs, tels que l'adrénaline, l'acétylcholine, l'histamine, les opiacées, la dopamine, etc.
Prenons un exemple de la méthode des traceurs. La maladie de Parkinson est due à une destruction des neurones du tronc cérébral qui produisent la dopamine. Cette dopamine va être libérée normalement au niveau d'une synapse entre deux neurones dans une structure très particulière en plein milieu du cerveau appelée les noyaux gris et les corps striés. Le traitement de la maladie de Parkinson consiste à donner de la dopa qui devient de la dopamine dans le cerveau. Il est donc possible de marquer la dopa avec du fluor 18 puis de suivre la libération de la dopamine par les quelques molécules radioactives injectées par voie intraveineuse. La tomographie par émission de positons permet de suivre l'évolution de la maladie par l'étendue des zones qui cessent de libérer la dopamine.
Un autre exemple concerne les récepteurs de la nicotine et de l'acétylcholine. Dans le cerveau il y a deux types de récepteurs de l'acétylcholine : le type muscarinique et le type nicotinique. Ces récepteurs disparaissent chez les patients atteints de la maladie d'Alzeihmer. Il est possible de marquer un médicament au fluor 18 pour observer les zones dans le thalamus où la molécule se fixe sur les récepteurs de la nicotine. La tomographie par émission de positons permet de mesurer quantitativement, point par point, non seulement la radioactivité mais aussi la densité de récepteurs grâce à un modèle mathématique. Elle permet donc de suivre au cours du temps l'évolution de la radioactivité dans le thalamus.
Ce qui est le plus remarquable c'est qu'on a fait fumer une cigarette au sujet en lui faisant de nouveau la même injection de fluoro-A85A81. Quatre-vingt minutes après l'injection, lorsque le patient fume une cigarette il y a une diminution considérable de la radioactivité. Le traceur radioactif injecté en des quantités infimes est en compétition avec la nicotine qui est arrivée dans le cerveau en quantité importante. Il est ainsi possible de mettre en évidence in vivo chez l'homme l'effet de la nicotine sur les récepteurs cérébraux.
Il est possible d'aller plus loin et d'observer ce qui se passe dans le cerveau lorsqu'un individu à des activités cognitives, telles que lire, parler, etc. Lorsque qu'un individu regarde un écran, il y a des circuits neuronaux qui sont activés au niveau du cortex visuel, dans le cortex occipital. L'injection de désoxy-glucose marqué permet d'observer les zones au travail dans le cerveau car elles consomment de l'énergie. La vue tridimensionnelle du cerveau par tomographie par émission de positons permet de faire la différence entre les yeux fermés et les yeux ouverts et de noter dans le cortex occipital une augmentation de la consommation de glucose.
L'imagerie par résonance magnétique nucléaire est une technique physique plus complexe puisqu'elle fait appel aux spins des noyaux de l'hydrogène et du phosphore. Nous avons vu précédemment qu'il n'y a pas d'isotope émetteur de positons qui nous conviennent pour l'hydrogène et le phosphore. Par contre ils ont un spin 1/2, c'est-à-dire qu'ils vont se comporter comme des petits aimants. Or, le corps humain est formé à 75 % d'eau. Il contient énormément d'atomes d'hydrogène. La première image par résonance magnétique a été réalisée en 1973 par Lauterbour. Lauterbour et Mansfield ont utilisé la transformée de Fourrier pour obtenir des images. Ils sont été récompensés par l'avant-dernier prix Nobel de physiologie. Ce qui est intéressant c'est que Lauterbour est un chimiste et que Mansfield est un physicien.
Avec le développement de techniques ultrarapides d'acquisition et de traitement de données, il est devenu possible de réaliser des images de résonance magnétique en des temps suffisamment brefs pour suivre certains aspects du métabolisme. L'imagerie par résonance magnétique nucléaire est devenue fonctionnelle. Il est possible d'observer les zones activées dans le cerveau lors des mouvements en notant les changements de concentration d'oxy-hémoglobine par rapport à la désoxy-hémoglobine. En effet, le mouvement consomme de l'énergie donc de l'oxygène apporté par l'oxy-hémoglobine. Or, l'une est paramagnétique, l'autre ne l'est pas, l'une détruit localement le champ magnétique. En plaçant le sujet dans un aimant, il est possible de détecter cette infime variation de signal.
Des expériences réalisées par Stanislas Dehaene toujours au Service hospitalier Frédéric Joliot par IRM fonctionnel, permettent de comparer l'image anatomique tridimensionnelle du cerveau d'un volontaire lorsqu'on lui demande de faire le calcul exact ou approximatif de deux soustractions : 11-5 et 11-9.
Des expériences encore plus récentes de Stanislas Dehaene ont permis d'observer l'inconscient. Par un processus d'images subliminales, il présente au sujet sur un écran des mots qu'il ne peut pas voir car la durée de présentation est trop courte. Un signal plus faible mais néanmoins détectable apparaît pour les mots subliminaux.
La spectroscopie par résonance magnétique nucléaire in vivo permet de faire de la chimie directement dans le cerveau. Nous savons mesurer la concentration d'un neurotransmetteur dans une région du cerveau, par exemple pour étudier l'épilepsie.
L'inconvénient majeur de la tomographie par émission de positons, de l'imagerie par résonance magnétique nucléaire fonctionnelle, est qu'elles mesurent des phénomènes à l'échelle de la seconde à quelques dizaines de secondes alors que les potentiels d'actions sont de l'ordre de la milliseconde. Pour les enregistrer il faut l'électroencéphalographie et la magnétoencéphalographie.
La magnétoencéphalographie consiste à enregistrer les variations de champs magnétiques produits dans le cerveau. L'idéal est de corréler ces mesures électriques avec l'imagerie par résonance magnétique nucléaire ou la tomographie avec émission de positons pour connaître leur localisation anatomique.

En conclusion, revenons à Frédéric Joliot en 1943 à l'occasion de sa conférence Nobel :
« Les applications biologiques des radioéléments paraissent simples à réaliser mais, en réalité elles nécessitent une mobilisation importante de matériel et de chercheurs ayant des connaissances variées. En biologie, il est nécessaire d'associer étroitement les activités du biologiste, du physicien et du chimiste. On conçoit tout le bénéfice qui peut être tiré pour ce genre de recherches de l'association de formes de pensée souvent très différentes et se complétant. »
Aujourd'hui il n'est pas envisageable de concevoir une recherche en France et dans le Monde qui ne soit pas multidisciplinaire et qui ne porte pas sur la complexité.

* Transcription réalisée par Juliette Roussel

Université René Descartes Paris-5

Partenaire de l'université de tous les savoirs 2001-2002 Accueil dans ses locaux les conférences

CERIMES

Portail de ressources et d'informations sur les multimédias de l'enseignement supérieur

UTLS sur Lemonde.fr

Le monde

la conférence en mp3 (audio)

partenaire des UTLS

la conférence en ogg (audio)

diffuse en audio les conférences en partenariat avec le CERIMES

Dans la même collection

Sur le même thème