Conférence
Notice
Lieu de réalisation
Sophia Antipolis
Langue :
Anglais
Crédits
CNRS - Centre National de la Recherche Scientifique (Publication), INRIA (Institut national de recherche en informatique et automatique) (Production), INRIA (Institut national de recherche en informatique et automatique) (Publication), UNS (Publication), Alexei A. Efros (Intervention)
Conditions d'utilisation
Droit commun de la propriété intellectuelle
DOI : 10.60527/bgc6-3h86
Citer cette ressource :
Alexei A. Efros. Inria. (2019, 28 novembre). Self-Supervised Visual Learning and Synthesis. [Vidéo]. Canal-U. https://doi.org/10.60527/bgc6-3h86. (Consultée le 11 décembre 2024)

Self-Supervised Visual Learning and Synthesis

Réalisation : 28 novembre 2019 - Mise en ligne : 6 décembre 2019
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

Computer vision has made impressive gains through the use of deep learning models, trained with large-scale labeled data. However, labels require expertise and curation and are expensive to collect. Can one discover useful visual representations without the use of explicitly curated labels? In this talk, I will present several case studies exploring the paradigm of self-supervised learning — using raw data as its own supervision. Several ways of defining objective functions in high-dimensional spaces will be discussed, including the use of General Adversarial Networks (GANs) to learn the objective function directly from the data. Applications of self-supervised learning will be presented, including colorization, on/off-screen source separation, image forensics, paired and unpaired image-to-image translation (aka pix2pix and cycleGAN), and curiosity-based exploration.

Intervention

Sur le même thème