Notice
Plus lente sera la chute
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Deux morceaux de métal, en apparence identiques, présentent un comportement différent lorsqu’on les fait glisser dans une cornière d’aluminium. Celui qui tombe lentement est un aimant, mais ce n’est pas une force magnétique qui le freine car l’aluminium, comme le cuivre, n’est pas magnétique. Les courants de Foucault, peut-être ?
Intervention
Thème
Documentation
Documents pédagogiques
Ce clip vidéo illustre l'une des 300 fiches constituant le site
"Physique à main levée" basé sur des expériences de physique réalisables
avec du matériel courant de la vie de
tous les jours et engendrant une réflexion pédagogique sur les concepts
physiques nécessaires à leur compréhension. <br>
Les domaines
couverts en physique sont les suivants: mécanique, chaleur, acoustique,
électricité, magnétisme, thermodynamique, etc…
Ces expériences
illustrent les programmes de physique de L1, L2 avec des recoupements sur les
programmes de 1ère et terminale; elles visent à redonner le goût de la physique
aux étudiants grâce à des manipulations simples et démonstratives.
Chaque fiche
présentée dans le site est ainsi découpée: objectifs, illustration permettant de
comprendre du premier coup d'oeil de quoi il s'agit, liste des appareils et du
matériel nécessaire, description du montage, explications des notions physiques
intervenant dans l'expérience, conseils pédagogiques et méthode, remarques,
historique et/ou informations complémentaires, références bibliographiques.
Consultez le site http://phymain.unisicel.fr
Dans la même collection
-
Une expérience à la façon d'Ørsted
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Une boussole placée au voisinage d’un fil électrique est déviée dès qu’un courant parcourt le fil. De même, si on enroule en plusieurs spires un fil électrique autour de la boussole, l’aiguille de
-
Faire osciller le filament d'une lampe
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Cette vidéo montre l’influence d’un aimant permanent sur le filament d’une lampe à incandescence : un curieux mouvement d’oscillation dû à l’attraction puis la répulsion entre l’aimant et le filament
-
Un frein magnétique
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Un disque de cuivre ou de laiton est astreint à osciller dans son plan. Dès qu’on approche de lui un puissant aimant, les oscillations sont freinées. Est-ce parce que l’aimant attire le disque ?
-
Retard à l'allumage
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Pour une fois, cette expérience est plutôt sérieuse et donc réservée aux grandes personnes. Il s’agit de montrer que le phénomène d’auto-induction dans une bobine magnétique retarde l’installation du
-
Des spectres magnétiques instantanés
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Un peu de limaille de fer enfermée dans une pochette transparente contenant de l’huile, il n'en faut pas plus pour faire apparaître les lignes de champ magnétique de quelques aimants usuels.
-
Un canon magnétique
Cette expérience spectaculaire ne demande que peu de matériel : deux billes d’acier, un aimant permanent et une glissière faite dans une baguette électrique. Pas de quoi faire un canon avec ça, pensez
-
Comment déformer une image sur l'écran
Si on approche un aimant d’un oscilloscope ou d’un téléviseur ancien, on observe une déformation de l’image affichée sur l’écran. Cette expérience montre que la trajectoire des électrons est
-
L'expérience ratée de Faraday
Deux anneaux d’aluminium, l’un fermé et l’autre ouvert sur quelques millimètres, sont fixés sur une baguette de bois pouvant tourner facilement. Un aimant approché de l’anneau fermé provoque la
-
Un détecteur de champ magnétique
BLONDEAU Jean-Marie
BONNEL Bernard
La direction des lignes de champ magnétique d’un aimant droit peut être visualisée à l’aide d’un simple trombone de bureau. En matérialisant ces lignes avec de la limaille de fer, on vérifie que le
-
Principe de fonctionnement d'un générateur électrique
Une bobine de fil électrique, un aimant et un galvanomètre permettent de mettre en évidence tous les aspects du phénomène d’induction magnétique, qui est à la base du fonctionnement d’un générateur
-
Champ magnétique créé par un fil rectiligne
Quatre petites boussoles sont disposées autour d’un fil électrique. Elles indiquent toutes la direction du Nord, mais lorsqu’un courant électrique passe dans le fil leur position change et dessine le
-
Entrainement par courants de Foucault
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Un disque fait en papier d'aluminium est posé sur la surface de l'eau d'une cuvette ; lorsqu'on approche un aimant et qu'on le déplace devant le disque, celui-ci se met en mouvement en suivant le
Avec les mêmes intervenants et intervenantes
-
Le sablier amnésique
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Un sablier de cuisine, convenablement lesté, est plongé dans un récipient contenant de l’eau. Si on le place dans le récipient alors que tout le sable est en bas, le sablier coule immédiatement.
-
Tombera ? Tombera pas ?
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Voici cinq expériences prouvant que la position du centre de gravité d'une personne est primordiale pour assurer son équilibre. Toutes sont faciles à faire, mais attention : certaines ne sont pas
-
Le pendule de Galilée
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Un pendule de Galilée est un pendule simple dont on peut modifier la longueur grâce à une tige placée sur son parcours. La période est modifiée, mais le pendule s’immobilise à des hauteurs
-
Le paradoxe des lentilles
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Une lentille à bords minces, convergente lorsqu’elle se trouve dans l’air, peut devenir divergente lorsqu’elle est plongée dans l’eau. Les propriétés d’une lentille ne dépendent donc pas
-
Une bulle d'air argentée
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Voici un dispositif très simple et que tout le monde peut fabriquer chez soi : un élastique coincé entre deux lames de verre ! Il permet pourtant d’illustrer de façon spectaculaire le phénomène de
-
Plus noir que noir
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Depuis un sketch dû à un humoriste maintenant disparu, « moins blanc que blanc » on sait ce que c’est. Mais « plus noir que noir » ? Mais si, ça existe aussi ! Venez voir. http://phymain.unisciel
-
Choc entre 2 billes de billard par demi-bille, partage d’énergie et direction des billes
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Une bille (N°1) en choque une autre (N°2) par demi-bille. Que veut dire ce terme demi-bille ? Pour aider le joueur de Billard, pouvez- vous imaginer comment se partage l’énergie initialement
-
Acrobaties autour du centre de gravité
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
On peut rendre stable un assemblage de divers objets en disposant astucieusement son centre de gravité. http://phymain.unisciel.fr/acrobaties-autour-du-centre-de-gravite/
-
Figures avec un bouton
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
On illustre que le moment cinétique est proportionnel au produit du moment d’inertie par la vitesse angulaire en faisant tourner un bouton sur un fil. http://phymain.unisciel.fr/figures-avec-un
-
Oscillations couplées de pinces à linge
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
On peut fabriquer des oscillateurs couplés avec deux pinces à linge et un élastique. http://phymain.unisciel.fr/oscillations-couplees-de-pinces-a-linge/
-
Comment courber un rayon lumineux ?
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
On peut visualiser les courants de convection au-dessus d’une flamme car l’indice de réfraction de l’air varie avec la température. http://phymain.unisciel.fr/comment-courber-un-rayon-lumineux/
-
Le faisceau lumineux captif
BLONDEAU Jean-Marie
BONNEL Bernard
MIKOLAJCZAK Bernard
DESTRUN Gérard
Les lois de Snell-Descartes sur la réfraction sont ici illustrées avec un ballon sphérique éclairé par un rayon laser. Une barrette de plexiglas permet également de visualiser le phénomène de
Sur le même thème
-
Évaluation des courses : théorie
CHOLLET Didier
Sont abordés les aspects historiques, les données mesurées et la justification des paramètres utilisés, comme la vistesse, la fréquence, la distance par cycle et l'indice de nage.
-
Remédiation (capsule n°3) : L'oscillateur harmonique: équation du mouvment
CAPSULE n°3 (résumé) Pour la résolution de l’équation du mouvement de l’oscillateur harmonique M, nous admettons que les conditions initiales (position et vitesse à l'instant initial)
-
Remédiation (capsule n°4) : L'oscillateur harmonique: notion d'énergie mécanique
CAPSULE n°4 (résumé) Nous donnons une introduction heuristique à la notion d'énergie en essayant de montrer les difficultés de définition qui sont sous-jacentes. Nous définissons une énergie comme
-
Remédiation (capsule n°1) : L'oscillateur harmonique: du PFD à l'équation du mouvement
CAPSULE n°1 (résumé) Nous introduisons rapidement le principe fondamental de la dynamique : soit M un mobile de masse (inerte) m se déplaçant sur une droite et repéré par son abscisse q(t)
-
Remédiation (capsule n°5) : L'oscillateur harmonique: conservation de l'énergie mécanique
CAPSULE n°5 (résumé) Nous vérifions la loi de conservation de l'énergie mécanique pour l'oscillateur harmonique de deux manières différentes.
-
Remédiation (capsule n°2) : L'oscillateur harmonique: notion de dimension, homogénéité des formules
CAPSULE n°2 Afin d’obtenir une interprétation physique de la pulsation nous introduisons des notions sur le calcul des dimensions physiques et nous abordons la question de l’homogénéité des
-
Remédiation (capsule n°6) : L'oscillateur harmonique: exercice sur le rapport entre deux fréquences…
CAPSULE n°6 (résumé) Nous proposons une présentation et une résolution complète d'un exercice sur l'oscillateur harmonique. A partir de deux mesures f_1 et f_2 de la fréquence d'un oscillateur
-
Remediation - Vecteurs position, vitesses et accélérations décrits en coordonnées cartésiennes et p…
PARDANAUD Cédric
L'objectif premier de cet élément de remédiation est de faire prendre conscience que les vecteurs vitesses et accélérations sont bien des vecteurs, et que cela n'est pas sans conséquences sur la
-
Remediation - Vecteurs position, vitesses et accélérations décrits en coordonnées cartésiennes et p…
PARDANAUD Cédric
L'objectif premier de cet élément de remédiation est de faire prendre conscience que les vecteurs vitesses et accélérations sont bien des vecteurs, et que cela n'est pas sans conséquences sur la
-
Remediation - Vecteurs position, vitesses et accélérations décrits en coordonnées cartésiennes et p…
PARDANAUD Cédric
L'objectif premier de cet élément de remédiation est de faire prendre conscience que les vecteurs vitesses et accélérations sont bien des vecteurs, et que cela n'est pas sans conséquences sur la
-
Remediation - Vecteurs position, vitesses et accélérations décrits en coordonnées cartésiennes et p…
PARDANAUD Cédric
L'objectif premier de cet élément de remédiation est de faire prendre conscience que les vecteurs vitesses et accélérations sont bien des vecteurs, et que cela n'est pas sans conséquences sur la
-
Remediation - Vecteurs position, vitesses et accélérations décrits en coordonnées cartésiennes et p…
PARDANAUD Cédric
L'objectif premier de cet élément de remédiation est de faire prendre conscience que les vecteurs vitesses et accélérations sont bien des vecteurs, et que cela n'est pas sans conséquences sur la