Vidéo pédagogique
Notice
Sous-titrage
English
Langue :
Anglais
Crédits
Christian Laugier (Intervenant)
Conditions d'utilisation
This course material is provided under Creative Commons License BY-NC-ND: the name of the author should always be mentioned ; the user can exploit the work except in a commercial context and he cannot make changes to the original work.
Citer cette ressource :
Christian Laugier. Inria. (2015, 1 juin). 1.8. Intelligent Vehicles: Context and State of the Art , in 1. Objectives, Challenges, State of the Art. [Vidéo]. Canal-U. https://www.canal-u.tv/61941. (Consultée le 6 décembre 2023)

1.8. Intelligent Vehicles: Context and State of the Art

Réalisation : 1 juin 2015 - Mise en ligne : 1 juin 2015
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3

Dans la même collection

Avec les mêmes intervenants

Sur le même thème

  • 3.1. Examples for the Action in the EKF
    Vidéo pédagogique
    00:09:13

    3.1. Examples for the Action in the EKF

    Martinelli
    Agostino

    In part 2, we have seen the equations of the Bayes filter, which are the general equations which allow us to update the probability distribution, as the data from both proprioceptive sensors and

  • 2.7. Grid Localization: an example in 1D
    Vidéo pédagogique
    00:11:52

    2.7. Grid Localization: an example in 1D

    Martinelli
    Agostino

    Now that we have the equations of the Bayes filter, we need a method in order to implement in real cases these equations. So, in the following, I want to discuss two methods, which are commonly

  • 5.9. Other approaches: Planning-based approaches
    Vidéo pédagogique
    00:07:52

    5.9. Other approaches: Planning-based approaches

    Vasquez Govea
    Alejandro Dizan

    In this video we are going to study a second, and probably the most promising alternative for motion prediction: planning-based algorithms.

  • 5.7. Typical Trajectories: drawbacks
    Vidéo pédagogique
    00:05:32

    5.7. Typical Trajectories: drawbacks

    Vasquez Govea
    Alejandro Dizan

    In previous videos we have discussed how to implement the typical trajectories and motion patterns approach. In this video we are going to discuss what are the drawbacks of such an approach,

  • 5.8. Other approaches: Social Forces
    Vidéo pédagogique
    00:05:35

    5.8. Other approaches: Social Forces

    Vasquez Govea
    Alejandro Dizan

    In this video we will review one of the alternatives we are proposing to the use of Hidden Markov models and typical trajectories: the Social Force model.

  • 5.6. Predicting Human Motion
    Vidéo pédagogique
    00:07:25

    5.6. Predicting Human Motion

    Vasquez Govea
    Alejandro Dizan

    In video 5.5 we have defined an HMM in Python. In this video we are going to learn how to use it to estimate and predict motion.

  • 5.4. Bayesian filter inference
    Vidéo pédagogique
    00:04:13

    5.4. Bayesian filter inference

    Vasquez Govea
    Alejandro Dizan

    In this video we will review the base filter and we will study a particular instance of the Bayesian filter called Hidden Markov models which is a discrete version of a Bayesian filter.

  • 5.3b. Learning typical trajectories 2/2
    Vidéo pédagogique
    00:04:46

    5.3b. Learning typical trajectories 2/2

    Vasquez Govea
    Alejandro Dizan

    In this video we are aiming to improve on the results we obtained in video 5.3a, in particular with respect to the greyed-out trajectories that are badly represented.

  • 5.3a. Learning typical trajectories 1/2
    Vidéo pédagogique
    00:05:30

    5.3a. Learning typical trajectories 1/2

    Vasquez Govea
    Alejandro Dizan

    In video 5.2 we showed how to apply the expectation maximization clustering algorithm to two-dimensional data. In this video we will learn how to apply it to trajectory data. And then we will be