2: McEliece Cryptosystem

collection
Mise en ligne : 05 mai 2015
  • niveau 1 niveau 2 niveau 3
  • document 1 document 2 document 3
Logo Inria

Descriptif

Tables of contents

2.1. Formal Definition

2.2. Security-Reduction Proof       

2.3. McEliece Assumptions

2.4. Notions of Security      

2.5. Critical Attacks - Semantic Secure Conversions      

2.6. Reducing the Key Size

2.7. Reducing the Key Size - LDPC codes

2.8. Reducing the Key Size - MDPC codes           

2.9. Implementation

 

Vidéos

2.2. Security-Reduction Proof
Vidéo pédagogique
00:04:42

2.2. Security-Reduction Proof

Marquez-Corbella
Irene
Sendrier
Nicolas
Finiasz
Matthieu

Welcome to the second session. We will talk about the security-reduction proof. The security of a given cryptographic algorithm is reduced to the security of a known hard problem. To prove that a

2.3. McEliece Assumptions
Vidéo pédagogique
00:03:14

2.3. McEliece Assumptions

Marquez-Corbella
Irene
Sendrier
Nicolas
Finiasz
Matthieu

In this session, we will talk about McEliece assumptions. The security of the McEliece scheme is based on two assumptions as we have already seen: the hardness of decoding a random linear code and

2.4. Notions of Security
Vidéo pédagogique
00:05:31

2.4. Notions of Security

Marquez-Corbella
Irene
Sendrier
Nicolas
Finiasz
Matthieu

In this session, we will study the notion of security of public-key scheme. A public-key scheme is one-way if the probability of success of any adversary running in polynomial time is negligible.

2.5. Critical Attacks - Semantic Secure Conversions
Vidéo pédagogique
00:05:04

2.5. Critical Attacks - Semantic Secure Conversions

Marquez-Corbella
Irene
Sendrier
Nicolas
Finiasz
Matthieu

In this session, we will study critical attacks against the public-key cryptosystem. The partial knowledge on the plaintext reduces drastically the computational cost of the attack to the McEliece

2.7. Reducing the Key Size - LDPC codes
Vidéo pédagogique
00:04:40

2.7. Reducing the Key Size - LDPC codes

Marquez-Corbella
Irene
Sendrier
Nicolas
Finiasz
Matthieu

LDPC codes have an interesting feature: they are free of algebraic structure. We will study in detail this proposal for the McEliece cryptosystem in this session. LDPC codes were originally

2.8. Reducing the Key Size - MDPC codes
Vidéo pédagogique
00:04:54

2.8. Reducing the Key Size - MDPC codes

Marquez-Corbella
Irene
Sendrier
Nicolas
Finiasz
Matthieu

This is the last session where we will talk about reducing the key size. Here we will introduce the MDPC codes. In 2012, the MDPC codes were proposed for the McEliece schemes. An MDPC code is a

Intervenants et intervenantes