Cours/Séminaire
Notice
Lieu de réalisation
Paris
Langue :
Anglais
Crédits
François Baccelli (Publication), Tom Hutchcroft (Intervention)
Détenteur des droits
Inria
Conditions d'utilisation
Droit commun de la propriété intellectuelle
Citer cette ressource :
Tom Hutchcroft. Inria. (2021, 22 novembre). Supercritical percolation on finite transitive graphs , in DYOGENE/ERC NEMO 2021 : Seminar series. [Vidéo]. Canal-U. https://www.canal-u.tv/147471. (Consultée le 27 février 2024)

Supercritical percolation on finite transitive graphs

Réalisation : 22 novembre 2021 - Mise en ligne : 22 novembre 2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

In Bernoulli bond percolation, each edge of some graph are chosen to be either deleted or retained independently at random with retention probability p. For many large finite graphs, there is a phase transition such that if p is sufficiently large then there exists a giant cluster whose volume is proportional to that of the graph with high probability. We prove that in this phase the giant cluster must be unique with high probability: this was previously known only for tori and expander graphs via methods specific to those cases. Joint work with Philip Easo.

Intervention

Dans la même collection

Sur le même thème