Cours/Séminaire
Notice
Lieu de réalisation
Paris
Langue :
Anglais
Crédits
François Baccelli (Publication), Dieter Mitsche (Intervention)
Détenteur des droits
Inria
Conditions d'utilisation
Droit commun de la propriété intellectuelle
Citer cette ressource :
Dieter Mitsche. Inria. (2023, 13 novembre). Tail bounds for detection times in mobile hyperbolic graphs , in DYOGENE/ERC NEMO 2023 : Seminar series. [Vidéo]. Canal-U. https://www.canal-u.tv/149147. (Consultée le 25 avril 2025)

Tail bounds for detection times in mobile hyperbolic graphs

Réalisation : 13 novembre 2023 - Mise en ligne : 13 novembre 2023
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

Tail bounds for detection times in mobile hyperbolic graphs

Abstract: Motivated by Krioukov et al.'s model of random hyperbolic graphs for real-world networks, and inspired by the analysis of a dynamic model of graphs in Euclidean space by Peres et al., we introduce a dynamic model of hyperbolic graphs in which vertices are allowed to move according to a Brownian motion maintaining the distribution of vertices in hyperbolic space invariant. For different parameters of the speed of angular and radial motion, we analyze tail bounds for detection times of a fixed target and obtain a complete picture, for very different regimes, of how and when the target is detected: as a function of the time passed, we characterize the subset of the hyperbolic space where particles typically detecting the target are initially located.

We overcome several substantial technical difficulties not present in Euclidean space, and provide a complete picture on tail bounds. On the way, we obtain also new results for the time more general continuous processes with drift and reflecting barrier spent in certain regions, and we also obtain improved bounds for independent sums of Pareto random variables.

Joint work with Marcos Kiwi and Amitai Linker.

Intervention

Dans la même collection

Sur le même thème