Canal-U

Mon compte
Maison des Sciences de l’Homme de Clermont-Ferrand

Le traitement semi automatisé des Modèles numériques d'élévation : un outil d'aide à la détection et à l'identification en archéologie


Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/msh_clermont_ferrand/embed.1/le_traitement_semi_automatise_des_modeles_numeriques_d_elevation_un_outil_d_aide_a_la_detection_et_a_l_identification_en_archeologie.62583?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Contacter la chaine
J’aime
Imprimer
partager facebook twitter

Le traitement semi automatisé des Modèles numériques d'élévation : un outil d'aide à la détection et à l'identification en archéologie

Intervention de Jean-Pierre Toumazet (Géolab, Université Clermont Auvergne)

L’utilisation du LiDAR comme outil d’aide au diagnostic archéologique s’est généralisée au fil des années, en raison des informations souvent très pertinentes qu’il est à même de produire, mais aussi grâce à la diminution du coût de son déploiement. Les quantités de données générées sont désormais énormes, et largement sous exploitée, car leur analyse exhaustive est bien trop chronophage. La démarche que nous présentons consiste à développer des solutions logicielles permettant la détection semi-automatisée de structures archéologiques. Pour que cette démarche soit pertinente, plusieurs conditions doivent être réunies : les éléments à détecter doivent être présents en grand nombre, présenter une signature morphologique permettant leur identification, et avoir une taille suffisante pour que leur morphométrie soit reconnaissable avec le niveau de pixelisation obtenu sur le modèle numérique de terrain issu du LiDAR. Pour cette présentation, nous nous intéressons ainsi à des proto-burons, des charbonnières ou encore des vestiges de la première guerre mondiale en forêt de Verdun. Plusieurs approches peuvent alors être menées pour la détection semi-automatisée. Si une forme précise et reproductible est recherchée, c’est à dire si l’on a un apriori sur l’objet d’intérêt, il est possible de procéder par corrélation entre les objets identifiés dans le MNT et notre modèle de la structure recherchée. A l’inverse, il est également possible de procéder sans a priori, en recherchant l’ensemble des micro-reliefs présents, et en réalisant ensuite une classification des objets identifiés, à partir de leurs caractéristiques morphométriques. Différentes classes peuvent alors être définies, regroupant entre eux les éléments les plus similaires. Cette dernière approche, faisant appel à des technologies à base de réseaux de neurones et d’intelligence artificielle, ouvre actuellement des perspectives les plus intéressantes.


 

commentaires


Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)
 

Dans la même collection

FMSH
 
Facebook Twitter
Mon Compte