Cours/Séminaire
Notice
Lieu de réalisation
Paris
Langue :
Anglais
Crédits
François Baccelli (Publication), Umberto De Ambroggio (Intervention)
Détenteur des droits
Inria
Conditions d'utilisation
Droit commun de la propriété intellectuelle
Citer cette ressource :
Umberto De Ambroggio. Inria. (2022, 14 février). The probability of unusually large components in critical random graphs via ballot theorems , in DYOGENE/ERC NEMO 2022 : Seminar series. [Vidéo]. Canal-U. https://www.canal-u.tv/147548. (Consultée le 26 avril 2025)

The probability of unusually large components in critical random graphs via ballot theorems

Réalisation : 14 février 2022 - Mise en ligne : 14 février 2022
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

We consider the classical Erdős-Rényi random graph as well as percolation on a random regular graph and provide matching upper and lower bounds for the probability of observing unusually large maximal components in these models when considered near criticality. We sketch the proof for the upper bounds, which is based on a ballot-type estimate (that could be of independent interest) for the probability that a random walk stays positive for n steps and finishes at some level j. We also present a simple, yet general result which yields polynomial upper bounds for the probability of observing large components in several models of random graphs when considered at criticality.

Intervention

Dans la même collection

Sur le même thème