Conférence

Physique et mécanique

Réalisation : 6 juillet 2005 Mise en ligne : 6 juillet 2005
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

Forte de sa maturité, la mécanique des solides n'en est que plus sollicitée par de nombreux défis à relever dans le futur. Les enjeux sont multiples : depuis la connaissance fondamentale, jusqu'à la conception et la caractérisation de nouveaux matériaux, en passant par la maîtrise de l'hétérogénéité de milieux à comportement complexe, en passant par l'exploitation de l'imagerie bi voire tridimensionnelle via l'analyse de champ, ou encore la prédiction de la variabilité ou de la fiabilité des solides et des structures. Dans toutes ces dimensions, physique et mécanique sont indissociablement liées, s'interpellant et dialoguant pour affronter plus efficacement ces challenges. Sur le plan expérimental, les mesures physiques, de plus en plus finement résolues spatialement, permettent d'aborder directement des réponses mécaniques inhomogènes, liées au désordre constitutif des matériaux ou à leur comportement non-linéaire dans des sollicitations complexes. Sur le plan de la modélisation numérique, l'ère du progrès purement algorithmique est sans doute révolu, pour laisser place à des approches performantes exploitant les problèmes multi échelles avec discernement. Enfin, en ce qui concerne la théorie, les progrès majeurs accomplis dans le passé dans l'homogénéisation des milieux élastiques permettent de mesurer les difficultés qui sous-tendent l'abord de l'hétérogénéité pour des lois de comportement complexes (plasticité, endommagement, et rupture, matériaux amorphes, milieux divisés ou enchevêtrés, …).

Chapitres
Intervenants
Thèmes
Notice
Langue :
Français
Crédits
UTLS - la suite (Réalisation), UTLS - la suite (Production)
Conditions d'utilisation
Droit commun de la propriété intellectuelle
Citer cette ressource :
Stéphane Roux. UTLS. (2005, 6 juillet). Physique et mécanique. [Vidéo]. Canal-U. https://www.canal-u.tv/31391. (Consultée le 30 septembre 2022)
Contacter
Documentation

Texte de la 584 e conférence de l'Université de tous les savoirs prononcée le 6 juillet

2005

Par Stéphane ROUX[1] : Physique et Mécanique

Résumé :

Forte de sa maturité, la mécanique des solides n'en est que plus sollicitée par de nombreux défis à relever. Les enjeux sont multiples : depuis la connaissance fondamentale, jusqu'à la conception et la caractérisation de nouveaux matériaux, en passant par la maîtrise de l'hétérogénéité de milieux à comportement complexe, l'exploitation de l'imagerie bi voire tri-dimensionnelle via l'analyse de champ, ou encore la prédiction de la variabilité ou de la fiabilité des solides et des structures. Dans toutes ces dimensions, physique et mécanique sont indissociablement liées, s'interpellant et dialoguant pour affronter plus efficacement ces challenges.

Sur le plan expérimental, les mesures physiques, de plus en plus finement résolues spatialement, permettent d'aborder directement des réponses mécaniques inhomogènes, liées au désordre constitutif des matériaux ou à leur comportement non-linéaire dans des sollicitations complexes. Sur le plan de la modélisation numérique, l'ère du progrès purement algorithmique est sans doute révolue, pour laisser place à des approches performantes exploitant les problèmes multi échelles avec discernement. Enfin, en ce qui concerne la théorie, les progrès majeurs accomplis dans le passé dans l'homogénéisation des milieux élastiques permettent de mesurer les difficultés qui sous-tendent l'abord de l'hétérogénéité pour des lois de comportement complexes (plasticité, endommagement, et rupture, matériaux amorphes, milieux divisés ou enchevêtrés, ...).

Ainsi dans tous ces domaines, et alliée à la physique, la mécanique du solide est confrontée à de nombreux et nouveaux défis, et se doit de s'exprimer dans des applications à haut potentiel industriel, économique et sociétal.

1 Introduction

Loin des feux médiatiques de la physique nanométrique ou de l'interface physique-biologie aujourd'hui porteurs de tant d'espoir, la science mécanique et plus spécifiquement la mécanique des solides pourrait apparaître comme une discipline achevée, aboutie. Les défis du passé surmontés ne laisseraient la place aujourd'hui qu'à des formulations de lois constitutives validées, à des protocoles d'essais mécaniques balisés et encadrés par des normes précises, et à des techniques de calcul éprouvées capables de digérer les lois de comportement et les géométries les plus complexes. Les progrès à attendre pourraient ainsi apparaître comme incrémentaux, voire marginaux, et les performances des résultats numériques simplement asservies au progrès fulgurant des ordinateurs. Ainsi, la reine en second des sciences dures de la classification d'Auguste Comte, entre mathématiques et physique, quitterait le domaine de la science active pour simplement alimenter son exploitation applicative et technologique.

Nul ne saurait en effet nier les très substantiels progrès récents de cette discipline qui sous-tendent une telle peinture. Seule la conclusion est erronée ! Victime d'une polarisation excessive de l'éclairage médiatique, et conséquemment des fléchages de moyens de l'ensemble des instances de recherche, mais aussi coupable d'une communication trop pauvre, (ou lorsqu'elle existe trop focalisée sur les applications) la discipline n'offre pas au grand public et plus spécifiquement aux jeunes étudiants une image très fidèle des défis qui lui sont proposés pour le futur.

Forte de sa maturité, la mécanique est aujourd'hui fortement sollicitée par de nombreux enjeux :

  • Enjeux de connaissance fondamentale : la terra incognita dont les frontières certes reculent, offre toujours de larges domaines à explorer, et paradoxalement parfois sous des formes presque banales, comme les tas de sable ou les milieux granulaires.
  • Enjeux des progrès des techniques d'analyse : Le développement d'outils d'analyse toujours plus sensibles, plus précis, plus finement résolus en espace et en temps, donne accès à des informations extraordinairement riches sur les matériaux dont l'exploitation dans leurs conséquences mécaniques est de plus en plus prometteuse mais aussi exigeante.
  • Enjeux liés à l'élaboration, et à la conception de nouveaux matériaux. Au-delà de la caractérisation structurale, la physique et la chimie proposent toutes deux des moyens d'élaboration de matériaux extraordinairement innovants qui sont autant de défis non seulement à la caractérisation mécanique, mais aussi à la proposition de nouvelles conceptions d'architecture micro-structurale, jusqu'aux échelles nanométriques.
  • Enjeux des nouvelles demandes de la société et de l'industrie. Le risque, l'aléa sont de moins en moins tolérés. Ils sont en effet combattus par le principe de précaution, pour leur dimension politique et sociale. Ils sont aussi pourchassés dans le secteur de l'activité industrielle, où les facteurs de sécurité qui pallient nos ignorances sont de moins en moins légitimes. Le progrès à attendre porte sur l'estimation des durées de vie en service de pièces ou de structure, ou sur les développements d'une quantification précise de la probabilité de rupture ou de ruine, reposant sur une évaluation de l'ensemble des sources d'aléas, depuis la loi de comportement du milieu, jusqu'à ses chargements voire même sa géométrie. Enfin, puisque la modélisation numérique devient précise et fiable, la tolérance vis-à-vis des erreurs de prédiction diminue, et plus qu'une réponse moyenne dans un contexte incertain, commence à s'affirmer une demande d'évaluation de la probabilité que tel résultat dépasse tel ou tel seuil.

2 Enjeu de connaissance fondamentale

La modélisation numérique de la mécanique d'un matériau peut être abordée de différentes manières :

  • Au niveau le plus fondamental, la dynamique moléculaire ab initio , rend compte des atomes et de leurs interactions dans le cadre de la mécanique quantique. Aucun compromis n'est réalisé sur la précision de la description, mais en contrepartie le coût du calcul est tel que rarement le nombre d'atomes excède quelques centaines, et la durée temporelle vraie couverte par la simulation est typiquement de l'ordre de la dizaine à la centaine de picoseconde.
  • Pour accélérer très sensiblement cette description, il est possible de simplifier les interactions atomiques en introduisant des potentiels effectifs. La simulation de dynamique moléculaire est alors maintenant réduite à l'intégration dans le temps des équations classiques (non-quantiques) du mouvement des atomes. Les échelles accessibles sont maintenant de quelques millions d'atomes, sur des temps allant jusqu'à quelques nanosecondes.
  • Pour gagner encore en étendue spatiale et temporelle, en ce qui concerne les matériaux cristallins où la déformation plastique est due au mouvement de dislocations, une stratégie d'approche intéressante consiste à accroître le niveau d'intégration de l'objet élémentaire étudié, ici la dislocation, et décrire un ensemble de tels défauts d'un monocristal, leur génération à partir de sources, leurs mouvements selon des plans privilégiés, leurs interactions mutuelles et avec les parois, la formation de défauts, jusqu'à la formation d'une « forêt » de dislocations. Cette description s'appelle la « dynamique des dislocations ».
  • Enfin à une échelle beaucoup plus macroscopique, la mécanique des milieux continus peut être étudiée numériquement par la classique méthode des éléments finis pour des rhéologies ou des lois de comportement aussi complexes que souhaitées.
  • Citons encore des simulations utilisant des éléments discrets pour rendre compte par exemple du comportement de milieux comme des bétons à une échelle proche des différentes phases constitutives (granulats, ciment, ...). L'intérêt ici est de permettre de capturer la variabilité inhérente à la structure hétérogène du milieu. Dans le même esprit, les éléments discrets permettent de modéliser les milieux granulaires avec un réalisme impressionnant, alors même que la description continue n'est aujourd'hui pas encore déduite de cette approche.

2.1 Savoir imbriquer les échelles de description

Chacune des approches citées ci-dessus est aujourd'hui bien maîtrisée et adaptée à une gamme d'échelles spatiale et temporelle bien identifiée. Il reste cependant à mieux savoir imbriquer ces différents niveaux de description, et à trouver des descriptions intermédiaires pour des systèmes spécifiques. Ainsi par exemple de nombreux travaux ont permis d'ajuster au mieux les potentiels empiriques de la dynamique moléculaire pour assurer une continuité de description avec les approches ab initio. Les maillons manquants concernent par exemple les matériaux amorphes comme les verres où la dynamique des dislocations n'est évidemment pas pertinente, et où un écart important existe entre les échelles couvertes par Dynamique Moléculaire et par la mécanique des milieux continus. L'exemple type du problème qui rassemble nombre de défis est celui de la fracture. Par nature, seule l'extrême pointe de la fissure est sensible à des phénomènes fortement non-linéaires. L'idée naturelle est alors de construire une modélisation véritablement multi-échelle, en associant simultanément différentes descriptions selon la distance à la pointe de la fissure.

Les points durs au sein de cette imbrication de description concernent l'identification des variables qui sont pertinentes pour caractériser l'état à grande échelle et celles dont la dynamique rapide peut être moyennée. Lorsque le comportement du système est purement élastique, alors ce changement d'échelle peut être effectué dans le cadre de l'homogénéisation, et de fait la procédure est ici très claire. On sait parfaitement aujourd'hui moyenner contraintes et déformations, et on maîtrise parfaitement la disparition progressive de l'hétérogénéité pour atteindre la limite aux grandes échelles d'un milieu élastique déterministe. Pour les comportements autres qu'élastiques linéaires, cette homogénéisation non-linéaire reste beaucoup moins bien maîtrisée en dépit des avancées récentes dans ce domaine, et le territoire à conquérir est à la fois vaste et riche d'applications.

Un des sujets limitants proche du précédent est surprenant tant sa banalité est grande : le comportement des milieux granulaires reste aujourd'hui un sujet de recherche très actif. Le caractère paradoxal des difficultés qui surgissent dans le lien entre descriptions microscopiques (bien maîtrisées) et macroscopiques (dont les fondations sont aujourd'hui peu satisfaisantes, même si des modèles descriptifs opérationnels existent) provient de la combinaison de deux facteurs : d'une part des lois de contact simples ( frottement et contact) mais « peu régulières » au sens mathématique, d'autre part une géométrie (empilement de particules) qui introduit de nombreuses contraintes non-locales à l'échelle de quelques particules. Les milieux granulaires montrent des difficultés spécifiques qui représentent toujours un défi pour la théorie.

2.2 Non-linéarité et hétérogénéité : Physique statistique

Décrire le comportement de milieux hétérogènes est un défi auquel a été confrontée la mécanique depuis des années. Comme mentionné ci-dessus, dans le cadre de l'élasticité de nombreux résultats ont été obtenus. Pour les milieux périodiques comme pour les milieux aléatoires, des bornes encadrant les propriétés homogènes équivalentes ont été obtenues, tout comme des estimateurs des propriétés homogènes équivalentes prenant en compte de diverses manières des informations microstructurales. Plus encore que des caractérisations moyennes macroscopiques, des informations sur leur variabilité ou encore des évaluations locales peuvent être obtenues portant par exemple sur la valeur de la contrainte ou de la déformation dans chaque phase du milieu.

Pour des rhéologies plus complexes, l'essentiel reste à construire :

Dans le domaine de la plasticité, de manière incrémentale, nous nous retrouvons sur des bases comparables à celle de l'élasticité de milieux hétérogènes, et cette correspondance a bien entendu été exploitée. Cependant une difficulté supplémentaire apparaît, au travers de corrélation spatiale à très longues portées dans les fluctuations de déformation qui se couplent ainsi au comportement local. Or, ces corrélations sont très difficiles à gérer sur un plan théorique et représentent toujours un défi pour l'avenir. Dans cette direction, des développements récents sur des modélisations élastiques non-linéaires donnent des pistes très intéressantes.

L'endommagement est une loi de comportement de mécanique de milieux continus déterministe qui décrit les milieux susceptibles de développer des micro-fissures de manière stable et dont on ne décrit que la raideur locale pour différents niveaux de déformation. Cela concerne en particulier des matériaux quasi-fragiles, comme le béton ou les roches. Paradoxalement, le caractère hétérogène de ces milieux multifissurés à petite échelle n'est pas explicitement décrit, et de fait cela ne s'avère pas nécessaire. Il existe cependant une exception notable, à savoir, lorsque le comportement montre une phase adoucissante, où la contrainte décroît avec la déformation. Ceci concerne au demeurant aussi bien l'endommagement fragile évoqué ci-dessus, que l'endommagement ductile où des cavités croissent par écoulement plastique. Dans le cas d'un adoucissement, le champ de déformation a tendance à se concentrer sur une bande étroite, phénomène dit de « localisation ». Or cette localisation dans une vision continue peut s'exprimer sur des interfaces de largeur arbitrairement étroite. Cette instabilité traduit en fait une transition entre un régime de multifissuration distribuée vers un régime de fracture macroscopique. Le confinement de la déformation concentrée devrait faire intervenir des échelles de longueur microscopiques permettant de faire le lien entre une dissipation d'énergie volumique (décrit par l'endommagement) et une dissipation superficielle sur la fissure macroscopique. Dans cette localisation, le caractère hétérogène de la fissuration se manifeste de manière beaucoup plus sensible, et c'est dans ce trait spécifique que doit être recherchée la liaison vers une fracture macroscopique cohérente avec la description endommageante. Ce passage reste à construire de manière plus satisfaisante qu'au travers des modèles non-locaux aujourd'hui utilisés dans ce contexte. C'est à ce prix que l'on pourra rendre compte de manière satisfaisante des effets de taille finie observés (e.g. valeur de la contrainte pic en fonction de la taille du solide considéré).

Dans le domaine de la physique statistique, des modèles de piégeage d'une structure élastique forcée extérieurement et en interaction avec un paysage aléatoire d'énergie ont été étudiés de manière très générale. Il a été montré dans ce contexte que la transition entre un régime piégé pour un faible forçage extérieur vers un régime de propagation à plus forte sollicitation pouvait être interprétée comme une véritable transition de phase du second ordre caractérisée par quelques exposants critiques universels. La propagation d'une fracture dans un milieu de ténacité aléatoire, la plasticité de milieux amorphes, sont deux exemples de champ d'application de cette transition de dépiégeage. Ce cadre théorique fournit potentiellement tous les ingrédients nécessaires à la description de la fracture des milieux hétérogènes fragiles ou de la plasticité des milieux amorphes, et en particulier ces modèles proposent un cadre général de la manière dont la variabilité de la réponse disparaît à la limite thermodynamique d'un système de taille infinie par rapport à la taille des hétérogénéités. La surprise est que cette disparition progressive des fluctuations se fait selon des lois de puissance dont les exposants sont caractéristiques du phénomène critique sous-jacent. La physique statistique peut donc donner un cadre général au rôle des différentes échelles mais sa déclinaison à une description cohérente de ces lois de comportement prenant en compte le caractère aléatoire de la microstructure reste pour l'essentiel à construire.

3 Enjeu des nouvelles techniques d'analyse

Ces vingt dernières années ont vu aboutir des progrès substantiels dans les techniques d'analyse, en gagnant dans la sensibilité, dans la diversité des informations recueillies et dans leur résolution spatiale et temporelle. Ces nouvelles performances permettent d'accéder à des mesures de champs dont l'exploitation sur un plan mécanique représente un nouveau défi.

3.1 Nouvelles imageries

Les microscopies à force atomique ( AFM) et à effet tunnel ( STM) permettent aujourd'hui dans des cas très favorables d'atteindre la résolution atomique. En deçà de ces performances ultimes, l'AFM permet de résoudre une topographie de surface avec des résolutions de quelques nanomètres dans le plan et de l'ordre de l'Angstrom perpendiculairement dans des conditions très courantes. Cet instrument, exploitant les forces de surface, permet de travailler selon différents modes (contact, non-contact, friction, angle de perte de la réponse mécanique, ...), ce qui donne accès, au-delà de la topographie, à des informations supplémentaires sur la nature des sites de surface.

La microscopie électronique en transmission ( TEM) permet, elle aussi, d'atteindre l'échelle atomique et représente un moyen d'analyse dont les performances progressent sensiblement .La préparation des échantillons observés reste cependant lourde et limite son utilisation à des caractérisations structurales de systèmes spécifiques.

A de plus grandes échelles, il est aujourd'hui possible d'utiliser des spectrométries ( Raman, Brillouin, Infra-rouge) dotées de résolutions spatiales qui selon les cas peuvent atteindre l'ordre du micromètre. Ces informations sont pour l'essentiel relatives à la surface de l'échantillon analysé, intégrant l'information sur une profondeur variable. Sensibles à des modes vibrationnels locaux, le signal renseigne sur la composition chimique ou la structure locale à l'échelle de groupements de quelques atomes.

Ces imageries ne sont plus même limitées à la surface des matériaux, mais permettent aussi une imagerie de volume. La tomographie de rayons X donne accès à des cartes tridimensionnelles de densité. En exploitant la puissance des grands instruments comme à l'ESRF, il est possible d'augmenter la résolution de cette technique pour atteindre aujourd'hui typiquement un ou quelques micromètres. Bien entendu, la taille de l'échantillon analysé dans ce cas est sensiblement inférieure au millimètre.

De manière beaucoup plus banale, l'acquisition d'images optiques digitales ou de film vidéo s'est véritablement banalisée, dans un domaine où l'accroissement de performance est aussi rapide que la chute des coûts, rendant très facilement accessible cette technologie. Il en va de même de la thermographie infra-rouge permettant l'acquisition de champs de température avec des résolutions spatiales et temporelles qui s'affinent progressivement.

3.2 Que faire avec ces informations ?

Ces développements instrumentaux de la physique nous conduisent dans l'ère de l'imagerie, et si nous concevons aisément l'impact de ces mesures dans le domaine de la science des matériaux, l'accès à ces informations fines et spatialement résolues entraîne également de nouveaux défis à la mécanique du solide. En effet, en comparant des images de la surface de solides soumis à différents stades de sollicitation, il est possible par une technique dite de corrélation d'image, d'extraire des champs de déplacement. La philosophie générale consiste à identifier différentes zones entre une image référence et une de l'état déformé en rapprochant au mieux les détails de ces zones et de repérer ce faisant le déplacement optimal. A partir de cette mesure point par point, une carte ou un champ de déplacement peuvent ainsi être appréciés. Le fait de disposer d'un champ au lieu d'une mesure ponctuelle (comme par exemple par un extensomètre ou une jauge de déformation) change notablement la manière dont un essai mécanique peut être effectué. L'information beaucoup plus riche permet de cerner l'inhomogénéité de la déformation et donc d'aborder la question de la relation entre déformation locale et nature du milieu. Il manque cependant une étape pour que cette exploitation soit intéressante : Quelle est la propriété élastique locale qui permet de rendre compte du champ de déplacement dans sa globalité ? Il s'agit là d'un problème dit « inverse » qui reçoit une attention accrue dans le domaine de la recherche depuis une vingtaine d'années. L'exploitation rationnelle de cette démarche permet de réaliser un passage homogène et direct depuis l'essai mécanique expérimental et sa modélisation numérique, exploitable pour le recalage ou l'identification de lois de comportement.

Citons quelques applications récentes ou actuelles de ces techniques d'imagerie avancées :

  • Fracture de matériaux vitreux imagée par AFM

En étudiant la surface d'un échantillon de verre lors de la propagation lente d'une fissure en son sein, par AFM, il est possible de mettre en évidence des dépressions superficielles que l'on peut interpréter comme la formation de cavités plastiques en amont du front de fracture. Si un comportement plastique à très petite échelle n'est pas une totale surprise, même pour des matériaux fragiles, cette mise en évidence est un exploit expérimental hors du commun qui repose sur les progrès de ces techniques d'imagerie.

  • Comportement plastique de la silice amorphe

La silice vitreuse et dans une moindre mesure la plupart des verres montrent lors de leurs déformations plastiques certains traits qui les distinguent des matériaux cristallins : Leur déformation plastique possède une composante de distorsion (habituelle) et une de densification (moins usuelle). Pour décrire l'indentation de ces matériaux et à terme l'endommagement superficiel qui accompagnera les actions de contact et le rayage, il est important d'identifier une loi de comportement cohérente. La difficulté est que lors d'une indentation, cette densification a lieu à des échelles qui sont typiquement d'une dizaine de micromètres. Ce n'est que très récemment qu'il a été possible d'obtenir des cartes de densification à l'échelle du micron en exploitant la micro-spectrométrie Raman. Ici encore, cette avancée expérimentale majeure n'a été rendue possible que par la grande résolution spatiale maintenant accessible.

  • Détection de fissures et mesure de leur ténacité

Par microscopie optique, il est possible d'observer la surface d'échantillon de céramique à des échelles microniques. Cette résolution est largement insuffisante pour y détecter des fissures dont l'ouverture est inférieure à la longueur d'onde optique utilisée. La corrélation d'image numérique aidée par notre connaissance a priori des champs de déplacements associés à la fracture (dans le domaine élastique) permet de vaincre cette limite physique et d'estimer non seulement la position de la fissure mais aussi son ouverture avec une précision de l'ordre de la dizaine de nanomètres.

  • Comportement de polymères micro-structurés

Les polymères en particulier semi-cristallins peuvent montrer des organisations microscopiques complexes. L'étude par AFM de la déformation locale par corrélation d'image en fonction de la nature de la phase permet de progresser dans l'identification de l'origine des comportements macroscopiques non-linéaires et leur origine microstructurale. La faisabilité de cette analyse vient à peine d'être avérée.

4 Enjeu des nouveaux matériaux

Au travers des exemples qui précèdent, nous avons déjà eu l'occasion d'évoquer des problématiques liées directement aux matériaux (milieux granulaires, matériaux amorphes, milieux quasi-fragiles, ...). Le développement de nouveaux matériaux fortement appelé par les besoins industriels, et par la maîtrise croissante des techniques d'élaboration, tant chimique que physique, pose sans cesse de nouveaux défis à l'appréciation de leurs performances mécaniques. Ceci est d'autant plus vrai que ces nouveaux matériaux sont de plus en plus définis, conçus ou formulés en réponse à une (ou plusieurs) fonction(s) recherchée(s). Cette orientation de pilotage par l'aval, sans être véritablement nouvelle, prend une place croissante dans la recherche sur les matériaux, par rapport à une approche plus « classique » où la connaissance de matériaux et de leur mode de synthèse se décline en une offre de fonctions accessibles.

4.1 Matériaux composites et nano-matériaux

L'ère des matériaux composites n'est pas nouvelle, et l'on sait depuis longtemps associer différents matériaux avec des géométries spécifiques permettant de tirer le meilleur bénéfice de chacun des constituants. Pour ne citer qu'un seul exemple, pas moins de 25 % des matériaux constitutifs du dernier Airbus A380 sont des composites, et cette proportion croît sensiblement dans les projets en développement. Au-delà de la sollicitation des différentes phases associées, le rôle crucial des interfaces a été vite compris et le traitement superficiel des fibres ou inclusions du matériau composite a été mis à profit pour moduler les propriétés globales ( arrêt de fissure par pontage et déflexion du front, modulation du report de charge après rupture).

Dans ce cadre, les nano-matériaux ne changent guère cette problématique générale. Leur taille peut, le cas échéant, justifier d'une très grande surface développée, et donc exacerber le rôle des interfaces et des interphases. Par effet de confinement, ces interphases peuvent également démontrer de nouvelles propriétés originales par rapport à leur correspondant volumique. Enfin, en réduisant la taille des objets constitutifs, leurs interactions vont facilement conduire à la formation d'agrégats ou de flocs. Cette propriété peut être soit subie soit exploitée pour dessiner une architecture idéale ou atteindre une nouvelle organisation (e.g. auto-assemblage).

4.2 Matériaux fibreux/Milieux enchevêtrés

Parmi les matériaux à microstructure, les milieux fibreux contenant des fibres longues d'orientation aléatoire se distinguent des milieux hétérogènes habituellement considérés de par la complexité géométrique de l'organisation des différentes phases à l'échelle du volume élémentaire représentatif. Que la géométrie gouverne alors la réponse mécanique ne donne cependant pas une clef facile pour résoudre ces fascinants problèmes.

4.3 Couches minces : Tribologie Frottement adhésion

La surface et le volume jouent souvent des rôles très différents selon les propriétés recherchées, et c'est donc naturellement qu'une voie prometteuse pour réaliser un ensemble de propriétés consiste à recouvrir la surface d'un solide par une (voire plusieurs) couche(s) mince(s). Concentrer la nouvelle fonction dans un revêtement superficiel permet d'atteindre un fort niveau de performance pour une faible quantité de matière. Ainsi par exemple sur verre plat, sont le plus souvent déposés des empilements de couches minces permettant d'accéder à des fonctions optiques, thermiques, de conduction électrique, ... spécifiques. En parallèle, il est important dans la plupart des applications de garantir la tenue mécanique du matériau ainsi revêtu.

Le comportement de ces couches minces dans des sollicitations de contact ponctuel et de rayage est donc crucial et souligne l'importance de la tribologie et de l'adhésion, sujets couverts par des conférences récentes dans le cadre de l'Université de tous les savoirs 2005 présentées par Lydéric. Bocquet et Liliane Léger respectivement.

4.4 Couplages multiphysiques

La mécanique n'est souvent pas une classe de propriétés indépendante des autres. De nombreux couplages existent entre élasticité et thermique, électricité, magnétisme, écoulement en milieu poreux, capillarité, adsorption, réactivité chimique ... La prise en compte de ces couplages devient stratégique dans la description et surtout la conception de matériaux « intelligents » ou « multifonctionels ». Ici encore, on se trouve vite confronté à un large nombre de degrés de libertés où il est important de savoir trier les variables (maintenant couplant paramètres mécaniques et autres) et les modes qui conditionnent les plus grandes échelles de ceux qui ne concernent que le microscopique. Les stratégies d'approche du multi-échelle et du multi-physique se rejoignent ainsi naturellement.

4.5 Vieillissement

La maîtrise du vieillissement des matériaux est l'objet d'une préoccupation croissante dans l'optique particulière du développement durable. Cette problématique fait partie intégrante des couplages multi-physiques que nous venons de citer si nous acceptons d'y adjoindre une dimension chimique. La composante de base est essentiellement la réactivité chimique parfois activée par la contrainte mécanique (comme dans la corrosion sous contrainte, la propagation sous-critique de fissure, ou certains régimes de fatigue), mais aussi le transport lui aussi conditionné par la mécanique. La difficulté majeure de ce domaine est l'identification des différents modes de dégradation, leur cinétique propre, et les facteurs extérieurs susceptibles de les influencer. En effet, il convient souvent de conduire des essais accélérés, mais la correspondance avec l'échelle de temps réelle est une question délicate à valider ... faute de temps ! Ici encore la modélisation est une aide précieuse, mais elle doit reposer sur une connaissance fiable des mécanismes élémentaires.

4.6 Bio-matériaux/bio-mimétisme

La nature a du faire face à de très nombreux problèmes d'optimisation en ce qui concerne les matériaux. De plus, confronté aux imperfections naturelles du vivant, les solutions trouvées sont souvent très robustes et tolérantes aux défauts. Faute de maîtriser l'ensemble des mécanismes de synthèse et de sélection qui ont permis cette grande diversité, nous pouvons déjà simplement observer, et tenter d'imiter la structure de ces matériaux. Cette voie, assumée et affirmée, est ce que l'on nomme le bio-mimétisme et connaît une vague d'intérêt très importante. Pour ne citer qu'un exemple, la structure des coquillages nous donne de très belles illustrations d'architectures multi-échelles, dotées d'excellentes propriétés mécaniques (rigidité et ténacité), réalisées par des synthèses « douces » associant chimies minérale et organique.

4.7 Mécanique biologique

Au-delà de l'observation et de l'imitation, il est utile de comprendre que les structures biologiques n'échappent pas aux contraintes mécaniques. Mieux, elles les exploitent souvent au travers des mécanismes de croissance et de différentiation qui, couplés à la mécanique, permettent de limiter les contraintes trop fortes et de générer des anisotropies locales en réponse à ces sollicitations. Exploiter en retour ce couplage pour influer sur, ou contrôler, la croissance de tissus biologiques par une contrainte extérieure est un domaine naissant mais certainement plein d'avenir.

5 Enjeu des nouvelles demandes/ nouveaux besoins

Puisque la maîtrise de la modélisation numérique est maintenant acquise en grande partie, pour tous types de loi de comportement ou de sollicitation, l'attente a cru en conséquence dans de nombreuses directions.

5.1 Essais virtuels

Le coût des essais mécaniques de structures est considérable car souvent accompagné de la destruction du corps d'épreuve. En conséquence, la pression est forte pour exploiter le savoir-faire de la modélisation, et ainsi réduire les coûts et les délais de mise au point. Dans le secteur spatial ou aéronautique, la réduction des essais en particulier à l'échelle unité a été extrêmement substantielle, jusqu'à atteindre dans certains cas la disparition complète des essais réels. S'y substitue alors « l'essai virtuel », où le calcul numérique reproduit non seulement l'essai lui-même, mais aussi des variations afin d'optimiser la forme, les propriétés des éléments constitutifs ou leur agencement. Cette tendance lourde se généralise y compris dans des secteurs à plus faible valeur ajoutée, où l'optimisation et la réduction des délais sont le moteur de ce mouvement.

5.2 Sûreté des prédictions

Si l'importance de l'essai mécanique s'estompe, alors il devient vite indispensable de garantir la qualité du calcul qui le remplace. Qualifier l'erreur globale, mais aussi locale, distinguer celle commise sur la relation d'équilibre, sur la loi de comportement ou encore sur la satisfaction des conditions aux limites peut être un outil précieux pour mieux cerner la sûreté de la prédiction. Cette mesure d'erreur ou d'incertitude peut guider dans la manière de corriger le calcul, d'affiner le maillage ou de modifier un schéma numérique d'intégration. Dans le cas de lois de comportement non-linéaires complexes, l'élaboration d'erreurs en loi de comportement devient un exercice particulièrement délicat qui requiert encore un effort de recherche conséquent compte-tenu de l'enjeu.

5.3 Variabilité Fiabilité

La situation devient plus délicate dans le cas où la nature du matériau, ses propriétés physiques, sa géométrie précise sont susceptibles de variabilité ou simplement d'incertitude. Bien entendu des cas limites simples peuvent être traités aisément par le biais d'approches perturbatives, qui (dans le cas élastique) ne changent guère la nature du problème à traiter par rapport à une situation déterministe. Pour un fort désordre (voire même un faible désordre lorsque les lois de comportement donnent lieu à un grand contraste de propriétés élastiques incrémentales), la formulation même du problème donne naturellement lieu à des intégrations dans des espaces de phase de haute dimensionalité, où rapidement les exigences en matière de coût numérique deviennent difficiles voire impossibles à traiter. Les approches directes, par exemple via les éléments finis stochastiques atteignent ainsi vite leurs limites. L'art de la modélisation consiste alors à simplifier et approximer avec discernement. Guidé dans cette direction par les approches multiéchelles qui ont eu pour objet essentiel de traiter de problèmes initialement formulés avec trop de degrés de liberté, nous devinons qu'une stratégie de contournement peut sans doute dans certains cas être formulée, mais nous n'en sommes aujourd'hui qu'aux balbutiements. Si l'on se focalise sur les queues de distributions, caractérisant les comportements extrêmes, peu probables mais potentiellement sources de dysfonctionnements graves, alors la statistique des extrêmes identifiant des formes génériques de lois de distributions stables peut également fournir une voie d'approche prometteuse.

Dans le cas des lois de comportement non-linéaires, comme l'endommagement, on retrouve une problématique déjà évoquée dans la section 2, certes sous un angle d'approche différent mais où les effets d'échelle dans la variabilité des lois de comportement aléatoires renormalisées à des échelles différentes demeure très largement inexplorée.

5.4 Optimisation

Quelle forme de structure répond-elle le mieux à une fonction imposée dans la transmission d'efforts exercés sur sa frontière ? Telle est la question à laquelle s'est attachée la recherche sur l'optimisation de forme. Des avancées récentes très importantes ont été faites dans le réalisme des solutions obtenues en prenant en compte de multiples critères. Ceux-ci incluent la minimisation de quantité de matière (mise en jeu dans les formulations premières du problème), mais aussi plus récemment des contraintes de réalisabilité de pièce via tel ou tel mode d'élaboration.

5.5 Contrôle

Parfois les sollicitations extérieures sont fluctuantes, et peuvent donner lieu à des concentrations de contraintes indésirables, ou encore à des vibrations proches d'une fréquence de résonance. Plutôt que de subir passivement ces actions extérieures, certains systèmes peuvent disposer d'actuateurs dont l'action peut potentiellement limiter le caractère dommageable des efforts appliqués. La question de la commande à exercer sur ces actuateurs en fonction de l'information recueillie sur des capteurs judicieusement disposés est au cSur du problème du contrôle actif. Ce domaine a véritablement pris un essor considérable en mécanique des fluides ( acoustique, et contrôle pariétal de la turbulence), et entre timidement aujourd'hui dans le champ de la mécanique des solides.

6 Conclusions

Ce très bref panorama, focalisé sur des développements en cours ou prometteurs, a pour but de montrer que la mécanique du solide est extraordinairement vivace. Confrontée à des défis nouveaux, elle voit ses frontières traditionnelles s'estomper pour incorporer des informations ou des outils nouveaux de différents secteurs de la chimie et de la physique. Elle se doit d'évoluer aussi sur ses bases traditionnelles, sur le plan numérique par exemple, en développant de nouvelles interfaces avec d'autres descriptions, (mécanique quantique, incorporation du caractère stochastique, couplages multiphysiques...), et en développant des approches plus efficaces pour traiter ne fut-ce qu'approximativement, des problèmes de taille croissante. On observe également que l'interface entre l'expérimental (mécanique mais aussi physique) et la modélisation numérique se réduit avec l'exploitation quantitative des nouveaux outils d'imagerie. Cette ouverture très nouvelle redonne toute leur importance aux essais mécaniques, domaine un peu délaissé au profit de la modélisation numérique.

7 Références

Le texte qui précède est consacré à un impossible exercice de prospective, qui ne doit pas abuser le lecteur, tant il est probable que, dans quelques années, ce texte n'offrira que le témoignage de la myopie du rédacteur. Pour tempérer ceci, et permettre à chacun de se forger une opinion plus personnelle, je ne mentionne pas ici de références. En revanche, le texte contient en caractère gras un nombre conséquent de mots clés, qui peuvent chacun permettre une entrée de recherche sur Internet, donnant ainsi accès à un nombre considérable d'informations, et d'opinions sans cesse mises à jour.

[1] E-mail : stephane.roux@saint-gobain.com

Canal-U

La Web TV de l'enseignement superieur

Université René Descartes Paris-5

Partenaire de l'université de tous les savoirs 2001-2002 Accueil dans ses locaux les conférences

UTLS sur Lemonde.fr

Le monde

la conférence en mp3 (audio)

partenaire des UTLS

la conférence en ogg (audio)

diffuse en audio les conférences en partenariat avec le CERIMES

Dans la même collection

Sur le même thème