2012
Vidéos
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 4)
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 2)
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 4)
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 3)
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 4)
The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 3)
The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 2)
The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
Alexandre Sukhov - J-complex curves: some applications (Part1)
We will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative
Serguei Ivachkovitch - Method of pseudoholomorphic curves and applications (Part 3)
The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the
Serguei Ivachkovitch - Method of pseudoholomorphic curves and applications (Part 1)
The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 3)
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 1)
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 1)
The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 2)
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 1)
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
Alexandre Sukhov - J-complex curves: some applications (Part 4)
We will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative
Alexandre Sukhov - J-complex curves: some applications (Part 3)
We will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative
Serguei Ivachkovitch - Method of pseudoholomorphic curves and applications (Part 4)
The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the
Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varie…
We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals
Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varie…
We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals
Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varie…
We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals
Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varie…
We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals
Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 4)
In this introductory course I will present the basic notions, both local and global, using classical examples. I will explain statements in connection with the resolution of singularities with
Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 3)
In this introductory course I will present the basic notions, both local and global, using classical examples. I will explain statements in connection with the resolution of singularities with
Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 2)
In this introductory course I will present the basic notions, both local and global, using classical examples. I will explain statements in connection with the resolution of singularities with
Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 1)
In this introductory course I will present the basic notions, both local and global, using classical examples. I will explain statements in connection with the resolution of singularities with
Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 4)
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also
Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 3)
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also
Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 2)
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also
Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 1)
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also
Intervenants et intervenantes
Mathématicien. Professeur, Département de mathématiques et applications (DMA, UMR 8553), École normale supérieure, Paris, depuis 2011 (en 2019). En poste : Université Paris-Saclay, UMR-CNRS 8628, Laboratoire de mathématiques d'Orsay (en 2024)
Docteur en Sciences. Recherche opérationnelle (Université Paris 9 Dauphine, 1985)
Directeur de thèses
Professeur à l'Université de Provence, Laboratoire d'Analyse Topologie et Probabilité
Enseignant chercheur Aix Marseille Université à l'Institut de mathématiques de Marseille(I2M). Directeur d'une thèse en Mathématiques à Aix-Marseille en 2019
Docteur-es-Sciences (Mathématiques), 1985. A l' université du Québec à Montréal (en 1986)
Professeur des Universités au Laboratoire Paul Painlevé (UMR 8524) de l'Université de Lille
Enseignant-chercheur et membre du laboratoire Paul Painlevé (UMR CNRS 8524) de l'Université de Lille 1 - Sciences et Technologies