Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 1)

Réalisation : 19 juin 2012 Mise en ligne : 19 juin 2012
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3

A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also exist plenty of global foliations of this form, so long as there are no topological obstructions. More precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no more than the integer part of . More generally, if is a complex vector subbundle of the tangent bundle such that is a flat bundle, then is homotopic (through complex vector subbundles of ) to an integrable subbundle, i.e., to the tangent bundle of a nonsingular holomorphic foliation on . I will prove these results and discuss open problems, the most interesting one of them being related to a conjecture of Bogomolov.

Date de réalisation
Langue :
Fanny Bastien (Réalisation)
Conditions d'utilisation
Citer cette ressource:
I_Fourier. (2012, 19 juin). Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 1). [Vidéo]. Canal-U. (Consultée le 24 janvier 2022)

Dans la même collection

Sur le même thème