Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 1)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
- audio 1 audio 2 audio 3
Descriptif
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en donner un aperçu à la fois pour démontrer des résultats classiques, comme la conjecture d’Arnold, et pour des résultats nouveaux.
The use of methods from the Sheaf Theory (Kashiwara-Schapira) was developped recently by Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara and Schapira. We will try to give an insight of that, in order to prove classical results, such as the Arnold conjecture, and to obtain new results.
Thème
Notice
Documentation
Liens
Dans la même collection
-
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 4)
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
-
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 4)LalondeFrançois
The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
-
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 3)LalondeFrançois
The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
-
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 3)
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
-
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 2)ViterboClaude
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
-
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 4)TelemanAndrei
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
-
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 3)TelemanAndrei
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
-
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 2)LalondeFrançois
The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
-
François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 1)LalondeFrançois
The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian
-
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 2)TelemanAndrei
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
-
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 1)TelemanAndrei
This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson
-
Avec les mêmes intervenants
-
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 2)ViterboClaude
L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"HerléaAlexandre
Alexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGDLouvetViolaine
Rédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
J. Fine - Knots, minimal surfaces and J-holomorphic curvesFineJoël
I will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato conditionTewodroseDavid
Presentation of a joint work with G. Carron and I. Mondello where we study Kato limit spaces.
-
D. Stern - Harmonic map methods in spectral geometrySternDaniel
Over the last fifty years, the problem of finding sharp upper bounds for area-normalized Laplacian eigenvalues on closed surfaces has attracted the attention of many geometers, due in part to
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass TheoremLesourdMartin
The study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flowBurkhardt-GuimPaula
We propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second
-
J. Wang - Topological rigidity and positive scalar curvatureWangJian
In this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
D. Semola - Boundary regularity and stability under lower Ricci boundsSemolaDaniele
The theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensionsLiChao
In this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
A. Mondino - Time-like Ricci curvature bounds via optimal transportMondinoAndrea
The goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the