1: Error-Correcting Codes and Cryptography

collection
Mise en ligne : 05 mai 2015
  • niveau 1 niveau 2 niveau 3
  • document 1 document 2 document 3
Logo Inria

Descriptif

Table of contents

1.1. Introduction I - Cryptography

1.2. Introduction II - Coding Theory        

1.3. Encoding (Linear Transformation)   

1.4. Parity Checking            

1.5. Error Correcting Capacity      

1.6. Decoding (A Difficult Problem)         

1.7. Reed-Solomon Codes   

1.8. Goppa Codes     

1.9. McEliece Cryptosystem

 

Vidéos

1.1. Introduction I - Cryptography
Vidéo pédagogique
00:07:18

1.1. Introduction I - Cryptography

Marquez-Corbella
Irene
Sendrier
Nicolas
Finiasz
Matthieu

Welcome to this MOOC which is entitled: code-based cryptography. This MOOC is divided in five weeks. The first week, we will talk about error-correcting codes and cryptography, this is an introduction

Vidéo pédagogique
00:05:50

1.2. Introduction II - Coding Theory

Marquez-Corbella
Irene
Sendrier
Nicolas
Finiasz
Matthieu

In this session, we will give a brief introduction to Coding Theory. Claude Shannon's paper from 1948 entitled "A Mathematical Theory of Communication" gave birth to the disciplines of Information

1.3. Encoding (Linear Transformation)
Vidéo pédagogique
00:04:14

1.3. Encoding (Linear Transformation)

Marquez-Corbella
Irene
Sendrier
Nicolas
Finiasz
Matthieu

In this session, we will talk about the easy map of the  - one-way trapdoor functions based on error-correcting codes. We suppose that the set of all messages that we wish to transmit is the set

1.5. Error Correcting Capacity
Vidéo pédagogique
00:08:25

1.5. Error Correcting Capacity

Marquez-Corbella
Irene
Sendrier
Nicolas
Finiasz
Matthieu

This sequence will be about the error-correcting capacity of a linear code. We describe the way of considering the space Fq^n as a metric space. This metric is necessary to justify the principle of

1.6. Decoding (A Difficult Problem)
Vidéo pédagogique
00:08:13

1.6. Decoding (A Difficult Problem)

Marquez-Corbella
Irene
Sendrier
Nicolas
Finiasz
Matthieu

The process of correcting errors and obtaining back the message is called decoding. In this sequence, we will focus on this process, the decoding. We would like that the decoder of the received

1.9. McEliece Cryptosystem
Vidéo pédagogique
00:05:34

1.9. McEliece Cryptosystem

Marquez-Corbella
Irene
Sendrier
Nicolas
Finiasz
Matthieu

This is the last session of the first week of this MOOC. We have already all the ingredients to talk about code-based cryptography. Recall that in 1976 Diffie and Hellman published their famous

Intervenants et intervenantes