Vidéo pédagogique

1.3. Encoding (Linear Transformation)

Durée : 00:04:14 -Réalisation : 5 mai 2015 -Mise en ligne : 5 mai 2015
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

In this session, we willtalk about the easy map of the - one-way trapdoor functionsbased on error-correcting codes. We suppose that the set of all messages that we wish to transmit is the set of k-tuples havingelements from the field Fq. There are qk possiblemessages and we referred to it as the message space.  In order to detect andpossibly correct errors, we add some redundancy, thus the ktuples will be embedded into n-tuples with n greater than k. In this MOOC, we will focus on linearencoder that is linear transformations. Every linear transformation can berepresented by a matrix multiplication. Thus our code, which is theimage of the message space,  consists of codewords of thesame length which are closed under addition andscalar multiplication. If the encoded matrixis injective, that is, if no two messages have thesame image, or in other words, if the encoding matrix hasrank k, then we consider a one to one correspondence between themessage space and the linear code. These are the cases thatwill care, where the encoding is some multiplication by amatrix of rank k, that is, our code is a vector subspace of Fq^n. 

Intervenant
Thème
Notice
Sous-titrage
anglais
Langue :
Anglais
Crédits
Irene Marquez-Corbella (Intervenant), Nicolas Sendrier (Intervenant), Matthieu Finiasz (Intervenant)
Conditions d'utilisation
Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’œuvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’œuvre originale.
Citer cette ressource :
Irene Marquez-Corbella, Nicolas Sendrier, Matthieu Finiasz. Inria. (2015, 5 mai). 1.3. Encoding (Linear Transformation). [Vidéo]. Canal-U. https://www.canal-u.tv/92679. (Consultée le 27 mars 2023)
Contacter
Documentation

Dans la même collection

Avec les mêmes intervenants

Sur le même thème