Vidéo pédagogique
Notice
Sous-titrage
Anglais
Langue :
Anglais
Crédits
Irene Marquez-Corbella (Intervention), Nicolas Sendrier (Intervention), Matthieu Finiasz (Intervention)
Conditions d'utilisation
Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’œuvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’œuvre originale.
DOI : 10.60527/swdk-y793
Citer cette ressource :
Irene Marquez-Corbella, Nicolas Sendrier, Matthieu Finiasz. Inria. (2015, 5 mai). 1.4. Parity Checking , in 1: Error-Correcting Codes and Cryptography. [Vidéo]. Canal-U. https://doi.org/10.60527/swdk-y793. (Consultée le 14 juillet 2024)

1.4. Parity Checking

Réalisation : 5 mai 2015 - Mise en ligne : 20 février 2017
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

 There are two standardways to describe a subspace, explicitly by giving abasis, or implicitly, by the solution space of the set ofhomogeneous linear equations. Therefore, there are twoways of describing a linear code, explicitly, as wehave seen in the previous sequence, by a generatormatrix, or implicitly, by the null space of a matrix. This iswhat we will see in this sequence. This leads to thefollowing definition: H is a parity check matrix of a linear code, ifthe code is the null space of H. In this way, any linear codeis completely specified by aparity check matrix. Suppose that we have amessage of 4 bits, then we put them in the middle of theVenn Diagram, and we complete the empty three areasaccording to the following rules. The number of ones inevery circle is even. This gives us three redundantbits that we add to the message. We say that our circle isincorrect, if its parity is odd. So, if you modify anysymbol, then the error is propagated to the circlewhere this symbol is involved. Thus, if the circle one andthe second circle are wrong, then we deduce that an error hasoccurred in the first position. If the three circlesare wrong, then we deduce that there has been anerror in the fourth position.Thus, the redundantinformation can be obtained from the message by means of threelinear equations or parity check.

Intervention

Dans la même collection

Avec les mêmes intervenants et intervenantes

Sur le même thème