- Présentation
- Rubriques
- Science Info Lycée Profs : conférences de formation des professeurs du secondaire en science informatique.
- Colloquium Jacques Morgenstern
- Science Info Lycéens : contenus d'enseignements pour les lycéens en science informatique.
- Forum des lauréats en informatique et mathématiques appliquées 2013
- Inria Joint Laboratory
- Les enjeux du Web 3.0 dans le secteur culturel
- Colloque Interfaces
- Cours en ligne
- Rencontres autour d'un sujet scientifique : Unithé ou café
- Séminaires scientifiques
- ERC Nemo
- Partenaires
- Contact
Binaural Hearing for Robots
Description
Robots have gradually moved from factory floors to populated areas.
Therefore, there is a crucial need to endow robots with perceptual and
interaction skills enabling them to communicate with people in the most
natural way. With auditory signals distinctively characterizing physical
environments and speech being the most effective means of communication
among people, robots must be able to fully extract the rich auditory
information from their environment.
This course will address fundamental issues in robot hearing;
it will describe methodologies requiring two or more microphones
embedded into a robot head, thus enabling sound-source localization,
sound-source separation, and fusion of auditory and visual information.
The course will start by briefly describing the role of
hearing in human-robot interaction, overviewing the human binaural
system, and introducing the computational auditory scene analysis
paradigm. Then, it will describe in detail sound propagation models,
audio signal processing techniques, geometric models for source
localization, and unsupervised and supervised machine learning
techniques for characterizing binaural hearing, fusing acoustic and
visual data, and designing practical algorithms. The course will be
illustrated with numerous videos shot in the author’s laboratory.
Who can attend this course ?The course is intended for Master of Science students with good
background in signal processing and machine learning. The course is also
valuable to PhD students, researchers and practitioners, who work in
signal and image processing, machine learning, robotics, or
human-machine interaction, and who wish to acquire competences in
binaural hearing methodologies.The course material will allow the attendants to design and develop robot and machine hearing algorithms.
Recommended BackgroundIntroductory courses in digital signal processing, probability and statistics, computer science.
Course SyllabusPart 1: Introduction to Robot HearingPart 2 : Methodological FoundationsPart 3 : Sound-Source LocalizationPart 4 : Machine Learning and Binaural HearingPart 5 : Fusion of Audio and Vision
The material of this course come from a MOOC delivered on France Université Numérique : https://www.fun-mooc.fr/courses/inria/41004/session01/about
Vidéo pédagogique
- HORAUD Radu
- niveau 1 niveau 2 niveau 3
- audio 1 audio 2 audio 3
- document 1 document 2 document 3
- HORAUD Radu
sounds onto their directions, collecting training data, the binaural
Manifold, predicting the direction of speech and work on some principles
of sound Separation.
- niveau 1 niveau 2 niveau 3
- audio 1 audio 2 audio 3
- document 1 document 2 document 3
- HORAUD Radu
time difference of arrival (TDOA), estimation of TDOA by
cross-correlation, in the temporal and spectral domains, the geometry of
multiple microphones, embedding the microphones in a robot head,
predicting direction of a sound with a robot head and an example of
sound direction estimation.
- niveau 1 niveau 2 niveau 3
- audio 1 audio 2 audio 3
- document 1 document 2 document 3
- HORAUD Radu
Robot heads and acoustic laboratories, Binaural Processing Pipeline,
Continuous-time Fourier transform, Discrete-time signals, Spectrogram of
an acoustic signal,...
- niveau 1 niveau 2 niveau 3
- audio 1 audio 2 audio 3
- document 1 document 2 document 3
- HORAUD Radu
- niveau 1 niveau 2 niveau 3
- audio 1 audio 2 audio 3
- document 1 document 2 document 3
Intervenants
Directeur de thèse à l'Université Joseph Fourier de Grenoble