Chapitres
- Présentation01'25"
- Introduction03'05"
- La théorie du "tout"13'39"
- Le principe d'incertitude08'19"
- La pratique concrète de la science et le conditionnement social07'28"
- La connaissance et la maîtrise du savoir07'14"
- Conclusion01'26"
- Questions: partie 112'37"
- Questions: partie 215'05"
Notice
Les limites de la connaissance physique
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Il n'est pas indifférent que dans ce cycle de conférences sur "tous les savoirs", la question des limites de la connaissance n'ait été posée qu'à la physique. C'est sans doute son statut implicite de science modèle qui lui vaut cet honneur. C'est aussi que, depuis le début du vingtième siècle, la physique s'est à elle-même posé la question. " L'homme devrait garder son humilité devant la nature puisque la précision avec laquelle il peut l'observer rencontre des limitations intrinsèques. " Ainsi l'Encyclopædia Britannica conclut-elle son article sur le "principe d'incertitude" de Heisenberg.
De fait, la révolution quantique a donné lieu à d'abondantes exégèses sur ce thème : l'impossibilité de mesurer à la fois la position et la vitesse des corpuscules signalerait une limite absolue de nos connaissances. La Nature elle-même refuserait de se laisser dévoiler, et notre science la plus avancée buterait ainsi sur des frontières infranchissables. L'impossibilité de dépasser la vitesse de la lumière, mise en évidence par Einstein, a été interprétée dans la même veine : nous ne pouvons savoir ce qui s'est passé sur le Soleil durant les huit dernières minutes, faute qu'aucun signal ne puisse nous en prévenir.
Mais avec un recul de quelques décennies, cette conception résignée, traduite par des vocables qui paraissent aujourd'hui pour le moins inadaptés (relativité, incertitudes), a perdu sa pertinence. Loin d'imposer des bornes à notre savoir, ces découvertes ont au contraire permis à notre compréhension de considérables progrès, en réorientant nos conceptualisations et nos interrogations. Elles ont montré l'inadéquation au réel de nos formulations antérieures. Si certaines questions (" Que se passait-il sur le Soleil il y a deux minutes ? ", " Où est l'électron et à quelle vitesse va-t-il ? ") n'admettent pas de réponses, c'est qu'elles sont dépourvues de pertinence. De même, la question " Qu'y a-t-il sur la Terre à 30.000 kilomètres au Sud de Paris ? " est-elle rendue caduque par la rotondité de la Terre et la connaissance de sa circonférence (40.000 kilomètres) ; dira-t-on pour autant que cette découverte impose une limitation à la géographie ?
Les mutations théoriques de la physique du vingtième siècle n'ont nullement découvert des limites intrinsèques à notre connaissance scientifique, mais, bien au contraire, lui ont ouvert de nouveaux espaces. En témoigne l'approfondissement considérable de notre maîtrise, intellectuelle mais aussi matérielle, du monde quantique.
Thème
Documentation
Documents pédagogiques
Texte de la 208e conférence de l’Université de tous les savoirs donnée le 26 juillet 2000.
La connaissance physique a-t-elle des limites ?
par Jean-Marc Lévy-Leblond
Il n’est pas indifférent que dans ce cycle de conférences sur “tous les savoirs”, la question des limites de la connaissance n’ait été posée qu’à la physique. C’est sans doute son statut implicite de science modèle qui lui vaut cet honneur. C’est aussi que, depuis le début du XXe siècle, la physique s’est à elle-même posé la question. « L’homme devrait garder son humilité devant la nature puisque la précision avec laquelle il peut l’observer rencontre des limitations intrinsèques. » Ainsi l’Encyclopædia Britannica conclut-elle son article sur le “principe d’incertitude” de Heisenberg. De fait, la révolution quantique a donné lieu à d’abondantes exégèses sur ce thème : l’impossibilité de mesurer à la fois la position et la vitesse des corpuscules signalerait une limite absolue de nos connaissances. La Nature elle-même refuserait de se laisser dévoiler, et notre science la plus avancée buterait ainsi sur des frontières infranchissables. L’impossibilité de dépasser la vitesse de la lumière, mise en évidence par Einstein, a été interprétée dans la même veine : nous ne pouvons savoir ce qui s’est passé sur le Soleil durant les huit dernières minutes, faute qu’aucun signal ne puisse nous en prévenir. Mais avec un recul de quelques décennies, cette conception résignée, traduite par des vocables qui paraissent aujourd’hui pour le moins inadaptés (relativité, incertitudes), a perdu sa pertinence. Loin d’imposer des bornes à notre savoir, ces découvertes ont au contraire permis à notre compréhension de considérables progrès, en réorientant nos conceptualisations et nos interrogations. Elles ont montré l’inadéquation au réel de nos formulations antérieures. Si certaines questions (« Que se passait-il sur le Soleil il y a deux minutes ? », « Où est l’électron et à quelle vitesse va-t-il ? ») n’admettent pas de réponses, c’est qu’elles sont dépourvues de pertinence. De même, la question « Qu’y a-t-il sur la Terre à 30 000 kilomètres au Sud de Paris ? » est-elle rendue caduque par la rotondité de la Terre et la connaissance de sa circonférence (40 000 kilomètres) ; dira-t-on pour autant que cette découverte impose une limitation à la géographie ? Les mutations théoriques de la physique du XXe siècle n’ont nullement découvert des limites intrinsèques à notre connaissance scientifique, mais, bien au contraire, lui ont ouvert de nouveaux espaces. En témoigne l’approfondissement considérable de notre maîtrise, intellectuelle mais aussi matérielle, du monde quantique. Reste que la persistance des interprétations négatives et des métaphores abusives (voir un récent article du Monde sur la « politique quantique de Jacques Chirac » !) montre bien cependant une limitation effective de nos connaissances – nous y reviendrons.
Au cours des dernières décennies, le défaitisme a plutôt cédé la place à un triomphalisme naïf, selon lequel la physique ne rencontrerait aucun obstacle et serait en mesure d’accéder à une connaissance complète de l’univers : le réel obéirait à un petit nombre de lois fondamentales, que nous serions sur le point de découvrir ; c’est le fantasme de la “théorie ultime” ou d’une “théorie du Tout”. La connaissance physique rencontrerait alors, effectivement, ses limites : finie par essence, elle toucherait bientôt à ses bornes, et s’épuiserait dans son succès. Une première réserve devant cette perspective, pourtant entretenue par des physiciens réputés, est suscitée par sa répétitivité : déjà Newton pensait avoir découvert une théorie universelle de la gravitation, capable d’expliquer l’ensemble des phénomènes physiques ; le développement de l’électromagnétisme a fait litière de cette prétention. À la fin du XIXe siècle, un aussi grand esprit que Lord Kelvin considérait que la physique était (presque) terminée – juste avant que l’on ne découvre les interactions nucléaires… Que la physique depuis plus d’un demi-siècle n’ait mis en évidence aucune nouveauté radicale, ne l’autorise en rien à proclamer la clôture du registre des forces essentielles à l’œuvre dans la nature. Mais surtout, l’autosatisfaction des physiciens fondamentalistes repose sur une vision bien pauvre de la réalité : la multiplicité des formes concrètes d’organisation de la matière, la richesse de comportement des innombrables objets de la nature, rend toujours plus large le hiatus entre les explications générales et la compréhension détaillée des faits. Un nombre croissant de phénomènes matériels, récemment découverts (la supraconductivité à haute température) ou connus depuis longtemps (la flottabilité de la glace) restent mal compris, bien que la théorie quantique abstraite qui les sous-tend soit connue. S’il y a une leçon à retenir du XXe siècle, c’est bien la faillite de tout réductionnisme naïf, selon lequel la connaissance théorique remonte nécessairement des principes à leurs manifestations. Une (très éventuelle) “théorie du Tout” ne serait certainement pas une théorie de tout… Le programme qui consiste à « remplacer du visible compliqué par de l’invisible simple » (selon les mots de Francis Perrin) ne saurait prétendre à l’universalité : l’invisible aussi peut être compliqué et, tel le vivant, ne guère se plier aux méthodes éprouvées de la physique – expérimentations dûment reproductibles, formalisation mathématique sophistiquée. C’est dire a fortiori que la physique rencontre effectivement des limites : celles des domaines où elle doit céder la place aux autres sciences. La scientificité ne peut se figer en critères généraux. Malgré ses prétentions à régir l’ensemble de nos connaissances scientifiques, ni son ancienneté, ni sa précision n’évitent à la physique de devoir reconnaître l’autonomie et la souveraineté des autres disciplines.
Mais on ne peut s’en tenir à un point de vue exclusivement épistémologique qui considèrerait la question des limites de la connaissance sous l’angle d’une confrontation abstraite entre la nature et l’esprit. Cet esprit est celui d’humains vivant en des sociétés particulières qui fournissent le cadre où se déroule le processus de connaissance, détermination qui à la fois permet et contraint la recherche de savoir. Il y eut des temps où ce conditionnement était essentiellement idéologique, comme le montre le rôle du christianisme dans la révolution scientifique du XVIIe siècle, rôle à la fois négatif (le procès de Galilée !) et positif (l’idée même du “Grand livre de la Nature”, liée au poids culturel des Écritures). Aujourd’hui prime l’économie. Le succès pratique de la physique au XXe siècle (électronique, nucléaire, etc.) tend à l’assujettir à des programmes à court terme, au détriment de projets plus spéculatifs. En même temps, l’industrie fécondée par la science reflue en son propre sein, conduisant à la “Big Science” dont le gigantisme semble atteindre ses bornes. La proportion des ressources sociales consacrées à la recherche fondamentale plafonne depuis quelques années, pour la première fois en quatre siècles de science moderne. L’abandon par les États-Unis, voici dix ans, de la construction d’un accélérateur de particules géant (SSC), signale ce changement d’ère. Les hésitations du politique devant les projets d’instrumentation scientifique à grande échelle (voir le récent conflit autour du projet de synchrotron “Soleil”) sont désormais la règle, ce qui ne saurait surprendre au vu de leurs budgets, couramment chiffrés en milliards de francs. Autant dire que la connaissance physique, dans certains de ses secteurs traditionnellement les plus prestigieux atteint les limites du socialement acceptable : la recherche du boson de Higgs, aussi excitante soit-elle pour l’esprit (de qui ?), présente un rapport coût/intérêt assez élevé pour que soit justifié son examen critique par la collectivité. Comme pour d’autres projets scientifiques, un ajournement de quelques décennies ne constituerait peut-être pas un retard majeur dans le développement de l’humanité. Après tout, d’autres entreprises humaines atteintes de gigantisme ont connu un coup d’arrêt au plus fort de leur développement. Les pyramides du Haut-empire égyptien et les cathédrales de l’Europe gothique ont laissé la place à des projets plus modestes – mais non moins féconds. Le redéploiement, historiquement bien tardif d’ailleurs, d’une physique à notre échelle (turbulence, matière molle) pointe dans cette direction. Mais on peut comprendre l’amertume des chercheurs devant les difficultés de leurs desseins désintéressés les plus ambitieux, alors que, en même temps, c’est un développement débridé que connaît la poursuite du savoir lorsqu’elle se confond avec celle du profit. Les mêmes phénomènes affectent (plus rapidement et plus vivement encore) les autres sciences, celles de la vie tout particulièrement. Mais la relative ancienneté de la physique permet d’étudier son cas avec quelque lucidité – privilège d’une ancienne aristocratie sur une jeune bourgeoisie.
Pour autant, cette domination et cette limitation de la science par l’économie et la politique n’est pas sans rapports avec ses problèmes épistémiques. Car, s’il est légitime de s’interroger sur les limites de la connaissance, encore faut-il savoir quel sens attribuer au mot “connaissance”. La polysémie de ce terme l’écartèle entre une signification réduite, celle d’un savoir factuel et particulier (la connaissance de la valeur de la vitesse de la lumière, ou la connaissance des éléments du tableau de Mendeleïev), et une signification large, celle d’une compréhension profonde et générique (la connaissance du rôle structurel de la vitesse-limite pour l’espace-temps, ou le rapport entre le tableau de Mendeleïev et la théorie quantique de l’atome). Force est de reconnaître que la physique moderne a accumulé un retard considérable quant à la maîtrise intellectuelle de ses propres découvertes. Bien des pseudo-paradoxes et des formulations insatisfaisantes continuent à la hanter, faute d’une refonte conceptuelle menée à bien ; le plus difficile à comprendre quant aux remarquables développements récents sur la notion de “non-séparabilité” quantique, par exemple, est encore leur considérable délai historique. La sophistication de nos formalismes a grandement crû beaucoup plus vite que notre capacité à en maîtriser le sens non ; déjà Maxwell s’écriait, il y a plus d’un siècle, que « nos équations semblent plus intelligentes que nous ! ». C’est là le contrecoup de la technicisation de la science, et de la division du travail qui s’y accentue, sans parler de la pression productiviste de son organisation sociale. Il est probable que ce déficit de notre connaissance – au sens le plus noble et le plus ambitieux du terme – handicape fortement les possibilités pour la science physique de dépasser certaines de ses difficultés actuelles. Mais si cette limitation a de sérieux effets au sein de la communauté scientifique, elle en a de bien plus graves encore dans la société en général. Comment développer une véritable acculturation de la science si ses praticiens eux-mêmes sont en manque aigu à cet égard ? Et, faute d’une reconquête intellectuelle, peut-on espérer que la science puisse devenir l’objet du débat démocratique dont la nécessité se fait chaque jour plus vive ? Ainsi, l’analyse des limites de la connaissance scientifique exige-t-elle d’abord la reconnaissance des limites de la science.
Bibliographie : Jean-Marc Lévy-Leblond, Aux contraires (l’exercice de la pensée et la pratique de la science), Gallimard, 1996 ; Impasciences, Bayard, 2000.
3
Dans la même collection
-
L'antimatière existe : je l'ai rencontrée
ThibaultCatherineL' antimatière reste un mystère pour beaucoup d'entre nous. Elle fascine certains, elle fait éventuellement peur à d'autres. Mais, au fait, qu'est-ce que la matière ? Et qu'est-ce que l'antimatière ?
-
Chaos, imprédictibilité, hasard
RuelleDavidLe monde qui nous entoure paraît souvent imprévisible, plein de désordre et de hasard. Une partie de cette complexité du monde est maintenant devenue scientifiquement compréhensible grâce à la théorie
-
Le refroidissement d'atomes par des faisceaux laser
Cohen-TannoudjiClaudeEn utilisant des échanges quasi-résonnants d'énergie, d'impulsion et de moment cinétique entre atomes et photons, il est possible de contrôler au moyen de faisceaux laser la vitesse et la position d
-
Les lasers
GiacobinoElisabethDepuis l'invention du premier laser en 1960, la diversité des lasers en couleurs, taille ou puissance n'a fait que croître. Les plus petits lasers sont si minuscules qu'on ne peut les voir qu'au
-
La lumière
BlayMichelLa lumière a constitué depuis l'Antiquité un objet central de recherche. Cependant ce n'est qu'au XVIIe siècle que les théories physiques de la lumière, c'est-à-dire l'étude de la lumière et des
-
Les tests et effets de la physique quantique
AspectAlainDepuis son émergence dans les années 1920, la Mécanique Quantique n'a cessé d'interpeller les physiciens par le caractère non intuitif de nombre de ses prédictions. On connaît l'intensité du débat
-
La physique quantique (Serge Haroche)
HarocheSerge"La théorie quantique, centrale à notre compréhension de la nature, introduit en physique microscopique les notions essentielles de superpositions d'états et d'intrication quantique, qui nous
-
Pourquoi les particules ont une masse ?
TreilleDanielLe monde des particules élémentaires et de leurs interactions est décrit par ce qu'on appelle le Modèle Standard. L'auteur rappellera les propriétés des constituants de la matière, et les mystères qui
-
Suivre les réactions entre les atomes en les photographiant avec des lasers
MartinJean-Louis"Les progrès de l'optique ont conduit à des avancées significatives dans la connaissance du monde du vivant. Le développement des lasers impulsionnels n'a pas échappé à cette règle. Il a permis de
-
Jusqu'où peut-on produire des noyaux atomiques ?
FlocardHubertProduire des noyaux atomiques revêt aujourd'hui une importance considérable. Ces noyaux, le plus souvent instables, ont de nombreuses applications. Ils sont utilisés en imagerie médicale, dans des
-
Qu'est-ce qu'une particule ? (les interactions des particules)
NeveuxAndréEn principe, une particule élémentaire est un constituant de la matière (électron par exemple) ou du rayonnement (photon) qui n'est composé d'aucun autre constituant plus élémentaire. Une particule
Sur le même thème
-
andy clark, predictive processing and the materially entangled mind
ClarkAndyTalk by Andy Clark (Philosophie and Informatique, Sussex), as part of the workshop "Memory, Place, and Material Culture", organized by John SUTTON, 2022-2023 research fellow at the Paris IAS,
-
#CocoPySHS 2022/2023 - Séance 5 - La traduction de R vers Python : enjeux pratiques et épistémiques
Gruson-DanielCélyaLemercierClaireSchultzEmilienPrésentation de Célya Gruson-Daniel (Inno3), Claire Lemercier (Sciences Po) et Emilien Schultz (Medialab).
-
Retour d'expérience sur l'utilisation croisée de plusieurs archives de fouilles
TufféryChristopheDans le cadre d'une thèse de doctorat engagée depuis 2019, une étude historiographique et épistémologique des effets des dispositifs numériques sur l'archéologie et sur les archéologues au cours des
-
Entretien avec Karine Chemla, historienne des sciences et sinologue
ChemlaKarineKarine Chemla, directrice de recherche au CNRS, est historienne des sciences et sinologue au laboratoire SPHERE, Sciences, Philosophie, Histoire (UMR 7219)
-
Sondages et manipulation : l'opinion publique comme technologie socioculturelle de domination et my…
Dans le prolongement et la critique du texte de Bourdieu "L'opinion publique n'existe pas", la conférence défend la position selon laquelle l'opinion publique est un pur construit social. Elle montre
-
Géographies. Épistémologie et histoire des savoirs sur l'espace
Pascal Clerc a dirigé un ouvrage collectif titré Géographies. Épistémologie et histoire des savoirs sur l'espace paru aux éditions du SEDES en 2012. Correspondant à une commande de l'éditeur, cet
-
"Méthodiquement non méthodique". Barthes et la méthode
Il n'a pas été indifférent à Barthes d'être méthodologique. Avant la mise en soupçon du mot de "méthode" au carrefour des années 1960-1970, Barthes a eu des velléités méthodistes au moment de la
-
Pierre Sallé - Créativité et DDL : Le cas des pratiques théâtrales (1970-2015) : Perspectives et en…
Comme le faisaient remarquer à juste titre Huver et Lorilleux (2018), « la question de l’articulation entre art et didactique des langues n’est pas nouvelle, mais sa caractérisation par le terme de
-
Culture numérique, culture des données - PANELS
GuichardÉricÀ partir d’exemples tirés de la Covid et de la téléphonie mobile, il sera montré en quoi la culture numérique relève de la culture de l’écrit contemporain, avec son lot de ségrégations et d
-
De la physique au solfège, Deuxième partie
Richard-CamusAudeForestSamuelCe cours fait le lien entre les notions de solfège et les notions physique de vibration des plaques et des cordes, d'ondes acoustiques, etc.
-
De la physique au solfège partie 1
Richard-CamusAudeForestSamuelCette vidéo associe les notions de solfège et les notions physique de vibration des plaques et des cordes, d'ondes acoustiques, etc.
-
Inférence à la meilleure explication en mathématiques : Concilier apriorité et révisabilité /Mathem…
Marina Imocrante discute de la nature des inférences à la meilleure explication en mathématiques. Peut-on, en mathématiques, avoir des formes à priori d’inférence à la meilleure explication ? Peuvent