Canal-U

Mon compte
Centre d'Enseignement Multimédia Universitaire (C.E.M.U.)  Université de Caen Normandie

07a - Compréhension automatique de la parole sans données de référence (taln2015)


Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/centre_d_enseignement_multimedia_universitaire_c_e_m_u/embed.1/07a_comprehension_automatique_de_la_parole_sans_donnees_de_reference_taln2015.18679?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Contacter le contributeur
J’aime
Imprimer
partager facebook twitter Google +

07a - Compréhension automatique de la parole sans données de référence (taln2015)

Sessions orales TALN 2015 – Mardi 23 juin 2015

Session Compréhension et paraphrase

Compréhension automatique de la parole sans données de référence

Emmanuel Ferreira, Bassam Jabaian et Fabrice Lefèvre

Résumé : La majorité des méthodes état de l’art en compréhension automatique de la parole ont en commun de devoir être apprises sur une grande quantité de données annotées. Cette dépendance aux données constitue un réel obstacle lors du développement d’un système pour une nouvelle tâche/langue. Aussi, dans cette étude, nous présentons une méthode visant à limiter ce besoin par un mécanisme d’apprentissage sans données de référence (zero-shot learning). Cette méthode combine une description ontologique minimale de la tâche visée avec l’utilisation d’un espace sémantique continu appris par des approches à base de réseaux de neurones à partir de données génériques non-annotées. Nous montrons que le modèle simple et peu coûteux obtenu peut atteindre dès le démarrage des performances comparables à celles des systèmes état de l’art reposant sur des règles expertes ou sur des approches probabilistes sur des tâches de compréhension de la parole de référence (tests des Dialog State Tracking Challenges, DSTC2 et DSTC3). Nous proposons ensuite une stratégie d’adaptation en ligne permettant d’améliorer encore les performances de notre approche à l’aide d’une supervision faible et ajustable de l’utilisateur.
 

commentaires


Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)
 

Dans la même collection

FMSH
 
Facebook Twitter Google+
Mon Compte