Conférence
Chapitres
Notice
Langue :
Français
Crédits
UTLS - la suite (Réalisation), UTLS - la suite (Production), Lydéric Bocquet (Intervention)
Conditions d'utilisation
Droit commun de la propriété intellectuelle
DOI : 10.60527/jsgv-gb12
Citer cette ressource :
Lydéric Bocquet. UTLS. (2005, 19 juillet). La tribologie , in la physique et ses applications. [Vidéo]. Canal-U. https://doi.org/10.60527/jsgv-gb12. (Consultée le 19 mars 2024)

La tribologie

Réalisation : 19 juillet 2005 - Mise en ligne : 18 juillet 2005
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

La tribologie est la science des frottements. Un 'frottement' intervient lorsque deux surfaces en contact sont mises en mouvement l'une par rapport à l'autre, produisant une force qui s'oppose au mouvement. La notion même de frottement est en fait très intuitive à tout un chacun, essentiellement car nous pouvons ressentir - physiquement - ses effets dans la vie quotidienne : se frotter les mains pour se réchauffer, craquer une allumette, jouer du violon, glisser sur la glace, freiner en voiture, entendre un crissement craie sur le tableau, mettre de l'huile dans les gonds de porte, etc., on pourrait multiplier les exemples connus de tous. La plupart de ces phénomènes peuvent se comprendre sur la base des lois du frottement énoncées dès le 18ème siècle par Amontons et Coulomb (mais déjà mises en évidence par Léonard de Vinci 200 ans auparavant), à partir de la notion de coefficient de frottement. Pourtant l'évidence apparente de ce 'vieux problème' cache l'extrême complexité sous-jacente. L'origine du frottement fait intervenir une multitude d'ingrédients, couvrant un spectre très large de phénomènes physiques : rugosité des surfaces, élasticité, plasticité, adhésion, lubrification, thermique, usure, chimie des surfaces, humidité, etc. Il y a donc un contraste paradoxal entre la simplicité de lois du frottement et la complexité des phénomènes sous-jacents, qui a constitué un défi majeur narguant l'imagination des scientifiques depuis près de 500 ans. Dans cet exposé, j'aborderai quelques manifestations du frottement sur différents exemples illustrant la complexité du phénomène. Je discuterai ensuite des causes du frottement, des premières interprétations de Amontons, Coulomb et d'autres au 18ème siècle en terme de rugosité de la surface, jusqu'aux travaux les plus modernes sur la nano-tribologie des contacts. Je décrirai en particulier les outils d'investigation modernes, tels que le microscope à force atomique, la machine de force de surfaces, les simulations numériques à l'échelle moléculaire, qui permettent désormais d'accéder aux fondements intimes du frottement aux échelles moléculaires avec des manifestations parfois étonnantes. Le développement de ces techniques d'investigation performantes ouvre désormais de nouvelles perspectives dans la compréhension et l'optimisation du frottement.

Intervention
Thème
Documentation

Texte de la 597 e conférence de l'Université de tous les savoirs prononcée le 19 juillet 2005

Par Lydéric Bocquet: « Approche physique du frottement »

La tribologie est la science des frottements. Un « frottement » intervient lorsque deux surfaces en contact sont mises en mouvement l'une par rapport à l'autre, produisant une force qui s'oppose au mouvement. La notion même de frottement est de fait très intuitive à tout un chacun, essentiellement car nous pouvons ressentir - physiquement - ses effets dans la vie quotidienne : se frotter les mains pour se réchauffer, craquer une allumette, jouer du violon, glisser sur la glace, freiner en voiture, entendre un crissement de craie sur le tableau, mettre de l'huile dans les gonds de porte, etc., etc. On pourrait multiplier les exemples connus de tous. Le frottement est ainsi intimement associé à la perception de notre environnement immédiat. Au cours de l'histoire humaine, les efforts pour s'en affranchir ont d'ailleurs été un facteur de progrès considérable, depuis l'invention de la roue plus de 3000 ans avant Jésus-Christ, jusqu'aux développements technologiques les plus récents dans la recherche de nouveaux matériaux (par exemple les composites céramiques pour la réalisation de prothèses artificielles). L'augmentation des performances techniques passe souvent par le développement de matériaux spécifiques qui permettent de diminuer les efforts de frottement : on limite ainsi l'usure, tout en réduisant la consommation énergétique, et en limitant le vieillissement des pièces. Dans d'autres domaines, l'effort est inversement plutôt concentré sur une augmentation du frottement, par exemple dans les dispositifs de freinage, ou les composites constituants les freins.

Les sciences du frottement sont donc intimement liées au développement technologique, tournées vers l'application. Pourtant c'est un domaine qui continue de soulever de nombreuses questions au niveau le plus fondamental. L'origine même du frottement reste largement incomprise et suscite de nombreuses études au niveau mondial, avec des découvertes récentes très prometteuses.

Des lois simples pour des phénomènes complexes -

La plupart des phénomènes associés au frottement peuvent se comprendre sur la base des lois phénoménologiques du frottement énoncées dès le 18ème siècle par Amontons et Coulomb (mais déjà mises en évidence par Léonard de Vinci 200 ans auparavant). Ces lois empiriques font intervenir une quantité clef : le coefficient de frottement, coefficient sans dimension que l'on note en général m. Plaçons un objet sur une surface plane : par exemple un kilo de sucre sur une table. Pour déplacer cet objet, de poids P (la masse multipliée par la constante de gravité, g=9.8 m/s2), il faut exercer une force FT parallèlement à la surface de la table. Mais l'expérience montre que cet objet ne se déplacera pas tant que la force FT est inférieure à une force minimale. De plus Amontons et Coulomb ont montré que cette force minimale est directement proportionnelle à la force normale, donc ici au poids : autrement dit, l'objet ne se déplace pas tant que

|FT |S |P|,

mS définissant le « coefficient de frottement statique ». D'autre part, si l'objet se déplace maintenant à vitesse constante sur la surface, l'expérience montre dans ce cas que la force de frottement tangentielle subie par l'objet est également proportionnelle à la force normale et (quasiment) indépendante de la vitesse :

|FT | = mD |P|,

mD définissant le « coefficient de frottement dynamique ». De façon générale on mesure que mD est plus petit que mS. De plus, Amontons et Coulomb, mais également Léonard de Vinci, ont mis en évidence que ces coefficients mS et mD ne dépendent pas de l'aire de contact de l'objet frottant (voir figure 3) : que l'on pose le kilo de sucre bien à plat ou sur la tranche, la force de frottement est la même, ce qui est assez peu conforme à l'intuition ! Nous reviendrons plus loin sur ce « mystère des surfaces », qui n'a été élucidé qu'assez récemment.

Un autre fait étonnant concerne la valeur typique de ces coefficients de frottement, qui s'écarte assez peu de m~0.3, pour des surfaces très différentes les unes des autres. La technologie permet toutefois de concevoir des surfaces avec des coefficients de frottement soit bien plus petits (m~0.001) soit plus grand (m > 1).

Le stick-slip, du violon aux tremblements de terre -

Ces lois simples permettent de rationaliser beaucoup des phénomènes observés pour les objets frottants. Nous nous attardons en particulier sur l'une des manifestations les plus marquantes du frottement, le stick-slip. Cette expression anglophone traduit parfaitement le phénomène, le stick-slip caractérisant un mouvement saccadé. Ce type de mouvement est observé lorsque l'on tire sur un objet frottant par l'intermédiaire d'un ressort : par exemple un paquet de sucre tiré par un élastique. Le mouvement de l'objet qui en résulte n'est en général pas uniforme mais saccadé : avec des périodes où l'objet résiste et ne bouge pas (« stick ») ; puis des périodes plus courtes où le seuil de résistance est dépassé et l'objet glisse sur une distance importante (« slip »). Les lois de Amontons-Coulomb permettent d'en comprendre les mécanismes élémentaires, et montrent que l'origine du « stick-slip » dans ce système mécanique simple {objet-ressort} est liée à l'inégalité des coefficients de frottement soulignée précédemment mD S. Les deux phases du mouvement reflètent ainsi deux états distincts du système : la phase statique (« stick ») est sous contrôle du frottement statique entre l'objet et la surface, tandis que la phase de glissement (« slip ») correspond au mouvement presque libre de l'objet sous l'action du ressort.

Cette dynamique saccadée se retrouve de façon générique dans des phénomènes pourtant très différents : du grincement des portes aux tremblements de terre, en passant par la mise en vibration d'une corde de violoncelle sous le frottement d'un archer. Même si ils se produisent à des échelles spatiales très différentes, ces phénomènes sont tous associés à une dynamique intrinsèque de type « stick-slip », associant les deux éléments mécaniques clefs : un corps frottant et un « ressort ». Dans le cas des instruments à cordes frottés, ces deux éléments sont aisés à identifier : le frottement se déroule à l'interface entre les crins de l'archer et la corde de l'instrument (via la colophane, résine qui augmente le frottement), tandis que la corde joue le rôle du « ressort ». Le mouvement continu de l'archer provoque une suite de petits déplacements de la corde, telle une multitude de pizzicati, qui produit in fine ce son velouté caractéristique des cordes frottées. Dans le cas des tremblements de terre, le frottement a lieu à l'interface entre plaques continentales qui jouent donc à la fois le rôle d'objet frottant (à leurs interfaces) et de ressort (dans leur globalité). Le déplacement des plaques continentales les unes par rapport aux autres pendant la phase stick conduit à l'accumulation de contraintes gigantesques à l'interface entre plaques. Le relâchement brutal de ces contraintes lorsque le seuil de résistance est atteint libère une énergie considérable et destructrice pendant la phase slip. Ici encore, le caractère saccadé du phénomène conduit à la production de vibrations, sous la forme d'ondes sismiques qui sont enregistrées par les sismographes. Si les mécanismes de base sont simples, la prédiction des tremblements de terre s'avère extrêmement complexe et continue à susciter des recherches poussées.

De l'origine des lois de Amontons-Coulomb -

Les lois du frottement énoncées précédemment sont très simples dans leur formulation, qui ne nécessite que l'introduction de coefficients sans dimension (mS et mD). Pourtant l'évidence apparente de ces lois cache l'extrême complexité sous-jacente. L'origine du frottement fait intervenir une multitude d'ingrédients, couvrant un spectre très large de phénomènes physiques : rugosité des surfaces, élasticité, plasticité, adhésion, lubrification, thermique, usure, chimie des surfaces, humidité, et cette liste n'est pas exhaustive. Il y a donc un contraste paradoxal entre la simplicité de lois du frottement et la complexité des phénomènes mis en jeu, qui a constitué un défi majeur narguant l'imagination des scientifiques depuis près de 500 ans.

Les premières tentatives d'explication des lois du frottement ont été proposées par Belidor et Coulomb au 18ème siècle, qui ont associé l'existence du frottement à la rugosité des surfaces. L'idée originale se base sur l'emboîtement des rugosités de surface qui conduit à l'existence d'un coefficient de frottement (voir Figure 1). Une schématisation simple de cette idée est représentée sur la figure 1 (droite), avec deux surfaces présentant des rugosités en dents de scie. Si l'on applique une force normale N sur la surface supérieure et une force horizontale T, un bilan des forces horizontales permet de montrer que l'équilibre des forces est rompu lorsque la force tangentielle est supérieure à une valeur de rupture : Tmax=mS |N|, définissant ainsi un coefficient de frottement statique mS=tan(a). L'angle a est ici la pente de la rugosité par rapport à l'horizontale. Aussi simpliste qu'il soit, cet argument permet de lier le frottement (statique) aux caractéristiques de la rugosité. De plus les valeurs expérimentales typiques des coefficients de frottement statique, de l'ordre de 0.3, correspondent à des pentes de la rugosité de surface de l'ordre de 15-20 degrés, ce qui est tout à fait compatible avec les caractéristiques typiques que l'on peut mesurer pour les rugosités de surfaces.

Cet argument repose cependant sur une hypothèse implicite : l'emboîtement parfait entre les rugosités des deux surfaces, tel que cela est illustré de façon schématique sur la figure 1, et sur la figure 2 (gauche) pour une surface schématique à l'échelle « atomique ». On parle dans ce cas de surfaces commensurables. Ca n'est bien sûr pas le cas en général dans la nature : même à l'échelle atomique, deux surfaces idéales, telles que celles qui sont représentés à l'échelle atomique sur la figure 2, présentent des légères différences de distance interatomique. Une légère disparité suffit à rendre très irrégulière la répartition des points de contact entre les deux surfaces (voir figure 2 droite), contrairement au cas commensurable (figure 2 gauche). On parle alors de surfaces incommensurables. On peut montrer par un raisonnement similaire à celui mené précédemment que la répartition irrégulière des contacts entre surfaces incommensurables conduit à l'annulation des

Figure 2 : Contact schématique entre deux surfaces (les disques esquissant les atomes de chaque surface en contact. (gauche) Deux surfaces commensurables en contact. Les points de contact entre surfaces (étoiles) sont répartis régulièrement. (droite) Deux surfaces incommensurables en contact. Les contacts entre surfaces (étoiles) se répartissent de façon irrégulière.

forces de frottement tangentielles : la force de frottement statique est identiquement nulle entre surfaces incommensurables !

Autrement dit, on aboutit à la conclusion que le frottement entre deux surfaces commensurables est non-nul, tandis qu'il s'annule exactement si ces deux surfaces sont incommensurables.

Ce résultat très étonnant a été confirmé pour la première fois dans des expériences très récentes par le groupe de M. Hirano et collaborateurs au japon [Hirano1997], puis confirmé par d'autre groupes de recherche, notamment pour des surfaces de graphite [Dienwiebel 2004].

Ce phénomène est désormais connu sous le nom de « supra friction » et a ouvert une voie de recherche très prometteuse pour le développement de surfaces avec des frottements très faibles, le graal des tribologues.

Cependant, la suprafriction est pour l'instant observée dans des conditions drastiques, assez éloignées des conditions de la vie réelle. Ces mesures sont notamment réalisées en plaçant ces surfaces dans une enceinte où un vide très poussé est réalisé. On supprime ainsi tout contaminant présent dans l'atmosphère (poussière, molécule organique, ...) qui, comme on va le voir, supprimerait cet état de suprafriction et conduirait à une force de frottement non-nulle. Il reste donc encore du chemin à parcourir pour obtenir des surfaces « supra-frottantes » dans des conditions d'utilisations technologiques, où il est difficile de supprimer la présence de polluants.

Le « troisième corps »- le grain de sable dans les rouages

La remarque précédente pointe le rôle joué dans le frottement par les contaminants et plus généralement les corps intersticiels. Ce rôle a été reconnu assez récemment dans l'histoire de la tribologie. Pourtant les corps intersticiels constituent un ingrédient incontournable du frottement. En effet, les surfaces laissées à l'air libre se polluent très rapidement sous l'effet de poussières, molécules organiques, de l'humidité, etc. présentes dans l'air. De plus le contact frottant entre deux surfaces génère lui-même des débris d'usure, grains de matière de tailles variées qui vont se retrouver dans les interstices à l'interface entre les deux surfaces. Une illustration simple est la trace laissée par une craie sur un tableau, ou d'un pneu lors du freinage.

Or la présence de contaminants modifie profondément le frottement, et notamment le scénario discuté précédemment en ce qui concerne la commensurabilité des surfaces frottantes. Des travaux récents utilisant des simulations numériques de ces processus à l'échelle moléculaire ont montré que la présence de quelques contaminants dans l'interstice entre les deux surfaces suffit à rétablir systématiquement un coefficient de frottement non-nul, même dans le cas où les deux surfaces sont incommensurables [Robbins]. Les contaminants mobiles viennent se placer dans les interstices laissés libres entre les surfaces et contribuent à rétablir une « commensurabilité effective » des surfaces, sous la forme d'un emboîtement partiel. Le coefficient de frottement prend alors une valeur non nulle, même pour des surfaces incommensurables. Les contaminants viennent jouer le rôle du « grain de sable » dans les rouages.

A cause de ces corps intersticiels, le contact entre deux surfaces dans des conditions de la vie quotidienne a donc assez peu à voir avec l'idée d'une assemblée d'atomes telle qu'elle est représentée sur la figure 2. Le « frottement idéal » qui y est représenté n'existe que dans des conditions très particulières. Ce résultat donne donc une perspective différente concernant l'origine du frottement entre surfaces, en pointant la contribution essentielle des impuretés.

Pour prendre en compte ces impuretés, les tribologues ont introduit la notion de « 3ème corps », qui regroupe l'ensemble des corps situés entre les deux surfaces en contacts (les deux premiers corps). Un problème de frottement doit donc en principe prendre en compte ces trois corps et les échanges (de matière, chaleur, etc.) qui peuvent exister entre eux. On voit ici poindre la complexité du problème de frottement. Les lois de Coulomb et l'origine même du frottement prennent leur origine non pas dans un seul phénomène bien identifié à l'échelle atomique, mais résulte d'un ensemble de phénomènes couplés.

Le mystère des surfaces -

Figure 3 : dessins de Léonard de Vinci, illustrant ses expériences démontrant l'indépendance du coefficient de frottement vis-à-vis de l'aire de contact entre le corps frottant et la surface (tiré de [Dowson]).

Cette complexité sous-jacente se retrouve dans une autre manifestation des lois de Amontons-Coulomb : l'indépendance des coefficients de frottement vis-à-vis de l'aire de contact. Léonard de Vinci avait déja observé ce phénomène, comme le montre l'une de ses planches (figure 3). Quelque soit la surface de contact de l'objet frottant, la force de frottement est identique. Ce résultat très contre-intuitif a défié l'imagination des scientifiques plusieurs siècles avant que Bowden et Tabor au Cavendish à Cambridge n'en proposent une explication dans les années 1950.

La clef de ce phénomène est une nouvelle fois la rugosité de surface. Comme on le montre schématiquement sur la figure 4, à cause de la rugosité, les zones de contact réel entre les surfaces sont bien plus petites que l'aire de contact apparente entre les surfaces, telle qu'elle nous apparait de visu.

Aréelle
Figure 4 : Illustration de deux surfaces rugueuses en contact. L'aire de contact réelle (Aréelle) entre les surfaces est bien plus petite que l'aire apparente (Aapp).
Aapp

Cette distinction entre surface réelle et surface apparente a été démontré par visualisation optique directe de la surface de contact, notamment par Dieterich et Kilgore et plus récemment par Ronsin et Baumberger. Cette observation donne une image de zones de contact réel très clairsemées, avec une taille typique pour chaque zone de l'ordre du micron. Ainsi l'aire de contact réelle entre deux objets macroscopiques ne représente typiquement que 0.1 % de l'aire de contact totale : Aréelle /Aapp~0.001.

Une conséquence immédiate est que la force normale (FN) à laquelle on soumet l'objet ne se répartit que sur les aspérités en contact et non sur l'ensemble de la surface de l'objet. En conséquence la pression au sein de ces contacts, c'est-à-dire la force par unité de surface, Pcontact=FN/Aréelle , est bien plus grande que celle que l'on attendrait a priori si la force FN se répartissait sur l'ensemble de la surface, Papp=FN/Aapp. Or aux très grandes pressions, un matériau devient en général plastique, c'est à dire qu'il s'écrase sans que sa pression ne varie. La valeur de la pression à laquelle se déroule ce phénomène est appelée dureté du matériau, que l'on notera H. La pression au sein des contacts étant fixée à H, on en déduit alors que l'aire réelle du contact est directement proportionnelle à la force appliquée : Aréelle = FN/H. Autrement dit, plus la force appliquée est grande, plus le contact réel est grand, ce qui est finalement assez intuitif.

Ce mécanisme permet de retrouver les lois de Coulomb. En effet, l'aire frottante étant l'aire réelle, on s'attend à ce que la force de frottement tangentielle soit proportionnelle à cette aire : Ffrottement = g Aréelle. Le coefficient de proportionalité g a les dimensions d'une force par unité de surface (donc d'une pression). On note plus généralement ce coefficient sY, « contrainte de cisaillement ». En utilisant l'expression précédente pour l'aire de contact réelle, Aréelle = FN/H, on aboutit à une force de frottement qui prend la forme d'une loi de Amontons-Coulomb : Ffrottement = m FN, avec m=sY/H qui est bien une caractéristique du matériau à la surface.

Cette explication de Bowden et Tabor au phénomène de frottement permet donc de comprendre la proportionalité de la force de frottement vis-à-vis de la force normale, mais également l'indépendance du coefficient de frottement vis-à-vis de la surface apparente de contact.

Cette explication repose cependant sur l'hypothèse de déformation plastique des aspérités, qui, si elle est pertinente pour des métaux, pose question pour d'autres matériaux (comme par exemple les élastomères). De fait, Greenwood et Williamson ont montré dans les années 1960 que le point clef du raisonnement précédent, c'est à dire la proportionalité entre aire de contact réelle et force normale FN, est maintenu même dans le cadre d'aspérités qui se déforment élastiquement, par un effet de moyenne statistique sur l'ensemble des aspérités en contact.

Une autre hypothèse implicite du raisonnement précédent est que la contrainte de cisaillement que nous avons introduit, sY, est une caractéristique des matériaux, indépendante des conditions du frottement, notamment de la vitesse. Ce point mérite de s'y attarder un peu plus longuement. La contrainte de cisaillement sY est associée aux propriétés mécaniques du contact à l'interface entre aspérités de tailles micrométriques. Des expériences récentes ont pu sonder indirectement les propriétés mécaniques de ces jonctions [Bureau]. Ces expériences suggèrent qu'à la jonction entre deux aspérités en contact, le matériaux se comporte comme un milieu « vitreux » et que la contrainte seuil est intimement associée à ces propriétés vitreuses. Qu'est-ce qu'on appelle un « milieux vitreux » ? Ce sont des milieux dont la structure microscopique est désordonnée (comme un liquide), mais figée (comme un solide). Leur propriétés sont intermédiaires entre celles d'un liquide et celles d'un solide : entre autres, ils ne coulent pas au repos (comme des solides), mais au delà d'une contrainte minimale appliquée, ils s'écoulent (comme des liquides). De tels matériaux sont omniprésents dans notre vie quotidienne : verre, mousses alimentaires, émulsions (mayonnaise), gels, milieux granulaires, etc. Ce sont justement ces propriétés mi-liquide, mi-solide qui constituent leur intérêt industriel (et notamment agro-alimentaire). Au delà des intérêts industriels évidents, ces milieux vitreux font actuellement l'objet d'une recherche fondamentale très intense, avec des progrès récents dans la compréhension des mécanismes élémentaires associés à leur façon très particulière de couler.

La question du frottement se trouve précisement liée à la compréhension des processus d'écoulement de tels milieux, pourtant à une tout autre échelle spatiale. Comprendre l'origine de la contrainte de cisaillement à l'échelle (quasi-nanométrique) des jonctions entre aspérités en contact rejoint ainsi la compréhension des propriétés d'écoulement de la mayonnaise ! Au delà de l'anecdote, cette compréhension soulève dans les deux cas des problèmes fondamentaux très délicats.

La lubrification -

Jusqu'à présent, nous avons concentré notre discussion sur le frottement dit « sec », qui correspond à la situation où les deux surfaces frottantes sont en contact direct. Mais du point de vue technologique et pratique, cette situation est à proscrire si l'on veut un frottement faible. Cela apparaît comme une évidence pratique qu'il faut lubrifier les pièces mécaniques et « mettre de l'huile dans les rouages ». Un moteur à explosion qui « tourne » sans huile va chauffer, jusqu'à subir des dommages définitifs. La diminution du frottement par l'ajout de lubrifiants est connu depuis des milliers d'années, comme le démontre ce bas-relief égyptien représenté sur la figure 5, datant de 1880 avant Jésus-Christ (document tiré de [Dowson]). Parmi les centaines d'hommes occupés à déplacer le traîneau sur lequel repose la statue, un personnage a un rôle bien particulier puisqu'on le voit verser du liquide devant le traîneau déplacé afin de lubrifier le contact entre le traîneau et le sol.

Figure 5 : Bas-relief égyptien montrant une statue tirée par 170 hommes. Le personnage encerclé verse du liquide pour lubrifier le frottement entre le support de la statue et le sol (tiré de [Dowson]).

Un autre exemple est la lubrification des articulations du corps humain. Par exemple, au niveau du genou, ce rôle du lubrifiant est tenu par le liquide synovial, liquide rendu très visqueux par la présence de molécules organiques très longues (l'acide hyaluronique). A l'inverse certaines pathologies, comme l'arthrose, sont associées à la baisse du pouvoir lubrifiant de ce liquide, notamment par la baisse de la viscosité.

Il apparaît donc naturel d'utiliser des liquides très visqueux comme lubrifiants (huiles, ou graisses). Ainsi, l'eau, liquide très peu visqueux, est en général un très mauvais lubrifiant. On peut s'en convaincre par une expérience très simple : des mains mouillées par de l'eau et frottées l'une contre l'autre maintiennent un fort frottement lors du mouvement, tandis que quelques gouttes d'huile suffisent à rendre les mains complètement glissantes. Si ce phénomène paraît intuitivement évident, il est toutefois étonnant de réaliser que c'est le liquide le moins fluide qui conduit au frottement le plus réduit.

Attardons-nous sur le rôle du lubrifiant dans le frottement. L'action du lubrifiant est double : d'une part le frottement entre les deux objets se réalise via un liquide et non plus directement sous la forme d'un frottement « sec » entre solides, ce qui conduit à un frottement fluide beaucoup plus faible ; et d'autre part, et c'est le point crucial, il permet d'éviter le contact solide direct. Autrement dit, l'un des rôles du lubrifiant est de maintenir la présence d'un film liquide entre les deux parois solides, empêchant ainsi les aspérités solides d'entrer en contact direct.

C'est justement là où va intervenir la viscosité. Un liquide visqueux coule « difficilement ». Lorsque l'on va presser les deux surfaces l'une contre l'autre (par exemple les mains dans l'exemple précédent), le liquide le plus visqueux sera le plus difficile à déplacer. Il se maintiendra donc sous la forme d'un film liquide entre les deux surfaces et c'est ce film liquide maintenu qui assurera le frottement fluide, donc la lubrification. A l'inverse, l'eau, fluide peu visqueux, va disparaître du contact lorsque les deux surfaces seront pressées l'une contre l'autre : un contact solide direct sera rétabli et l'on retrouve ainsi un frottement « sec » avec un coefficient de frottement élevé.

D'autres propriétés du lubrifiant vont également jouer un rôle dans ce mécanisme, notamment la « mouillabilité », c'est à dire l'affinité du liquide vis-à-vis de la surface, qui va influer sur la capacité du lubrifiant à recouvrir la surface et ses anfractuosités.

Le lubrifiant doit donc assurer des fonctions relativement antagonistes : l'une est d'être suffisamment fluide pour assurer un faible frottement, l'autre d'être suffisamment visqueux pour éviter le contact direct. Une huile de type moteur est donc un mélange complexe, contenant des dizaines d'additifs dont l'assemblage permet au final d'atteindre ces deux objectifs de façon optimale.

Conclusions :

Dans ce texte, nous avons présenté quelques points intervenant dans le problème du frottement entre solide. En aucun cas, il ne s'agit ici d'un panorama exhaustif et nous n'avons pas parlé ici de nombre de phénomènes également présent dans les problèmes de frottement, comme la physico-chimie des surfaces, la thermique, le vieillissement, l'usure, l'abrasion, etc...qui auraient tout aussi bien nécessités une discussion approfondie.

La tribologie est ainsi une science par essence pluridisciplinaire. Le phénomène de frottement résulte non pas d'un mécanisme unique, mais d'une multitude de phénomènes complexe et souvent couplés, qui aboutissent in fine aux lois pourtant simples d'Amontons-Coulomb.

C'est également vrai dans l'approche scientifique de ces problèmes. La science des frottements associe ingénieurs et scientifiques, recherche appliquée et fondamentale. Ces deux approches sont par nature couplées. Ainsi, si les questions soulevées sont anciennes, c'est un domaine dans lequel les derniers développements fondamentaux ont permis de mettre en évidence des phénomènes complètement inattendus, laissant augurer de progrès technologiques important dans un avenir proche.

Références :

[Bowden-Tabor] F.P. Bowden and D. Tabor, « The friction and lubrication of solids » (Clarendon Press, London, 1950).

[Bureau] L. Bureau, T. Baumberger, C. Caroli, « Jamming creep at a frictional interface », Physical Review E, 64, 031502 (2001).

[Dowson] D. Dowson « History of Tribology » (Longman, New York, 1979).

[Dienwiebel] M. Dienwiebel et al., « Superlubricity of Graphite », Physical Review Letters, 92, (2004).

[Hirano1997] M. Hirano, K. Shinjo, R. Kaneko and Y. Murata, « Observation of superlubricity by scanning tunneling microscopy », Physical Review Letters, 78, pp.1448-1451 (1997)

[Robbins] G. He, M. Müser, M. Robbins « Adsorbed Layer and the origin of static friction », Science 284 1650-1652 (1999).

Université René Descartes Paris-5

Partenaire de l'université de tous les savoirs 2001-2002 Accueil dans ses locaux les conférences

CERIMES

Portail de ressources et d'informations sur les multimédias de l'enseignement supérieur

UTLS sur Lemonde.fr

Le monde

la vidéo de la conférence du 19/07/05 en mp3

partenaire des UTLS

la vidéo de la conférence du 19/07/05 en ogg

diffuse en audio les conférences en partenariat avec le CERIMES

Le texte de la conférence du 19/07/05 en pdf

Dans la même collection

Sur le même thème