Canal-U

Mon compte
Institut Fourier

D. Vittone - Rectifiability issues in sub-Riemannian geometry


Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/institut_fourier/embed.1/d_vittone_rectifiability_issues_in_sub_riemannian_geometry.47399?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Auteur(s) :
VITTONE Davide

Producteur Canal-U :
Institut Fourier
Contacter le contributeur
J’aime
Imprimer
partager facebook twitter Google +

D. Vittone - Rectifiability issues in sub-Riemannian geometry

In this talk we discuss two problems concerning “rectifiability” in sub-Riemannian geometry and particularly in the model setting of Carnot groups. The first problem regards the rectifiability of boundaries of sets with finite perimeter in Carnot groups, while the second one concerns Rademacher-type results (existence of a tangent plane out of a negligible set) for (intrinsic) graphs with (intrinsic) Lipschitz regularity. We will introduce both problems and discuss the state-of-the-art. Eventually, we will present some recent results about the rectifiability of sets with finite perimeter in a certain class of Carnot groups (including the simplest open case, i.e., the Engel group) and about a Rademacher theorem for intrinsic Lipschitz graphs of any dimension in Heisenberg groups.

 

commentaires


Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)
 

Dans la même collection

FMSH
 
Facebook Twitter Google+
Mon Compte