Conférence

R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions

Durée : 01:13:18 -Réalisation : 29 juin 2021 -Mise en ligne : 29 juin 2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow. Under a natural non-collapsing condition, this limiting flow is smooth on the complement of a singular set of parabolic codimension at least 4. We furthermore obtain a stratification of the singular set with optimal dimensional bounds depending on the symmetries of the tangent flows. Our methods also imply the corresponding quantitative stratification result and the expected $L^p$-curvature bounds.       As an application we obtain a description of the singularity formation at the first singular time and a long-time characterization of immortal flows, which generalizes the thick-thin decomposition in dimension 3. We also obtain a backwards pseudolocality theorem and discuss several other applications.

Intervenant
Thème
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation), Hugo BÉCHET (Réalisation), Richard H. Bamler (Intervenant)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource :
Richard H. Bamler. I_Fourier. (2021, 29 juin). R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions. [Vidéo]. Canal-U. https://www.canal-u.tv/107565. (Consultée le 4 juin 2023)
Contacter
Documentation

Dans la même collection

Avec les mêmes intervenants

Sur le même thème