Langue :
Fanny Bastien (Réalisation), Hugo BÉCHET (Réalisation), Raquel Perales (Intervention)
Conditions d'utilisation
DOI : 10.60527/0x9q-dt54
Citer cette ressource :
Raquel Perales. I_Fourier. (2021, 29 juin). R. Perales - Recent Intrinsic Flat Convergence Theorems , in 2021. [Vidéo]. Canal-U. (Consultée le 20 juillet 2024)

R. Perales - Recent Intrinsic Flat Convergence Theorems

Réalisation : 29 juin 2021 - Mise en ligne : 30 août 2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3

Given a closed and oriented manifold M and Riemannian tensors g0, g1, ... on M that satisfy g0 < gj, vol(M, gj)vol (M, g0) and diam(M, gj)D we will see that (M, gj) converges to (M, g0) in the intrinsic flat sense. We also generalize this to the non-empty bundary setting. We remark that under the onditions we do not nexessarily obtain smooth, C0 or even Gromov-Hausdorff convergence. furthermore, these results can be applied to show stability of a class of tori and a class of complete and asymptotically flat manifolds. That is, any sequence of tori in the former class with almost nonnegative scalar curvature convergences to a flat tori, and any sequence of manifolds in the latter with ADM masses converging to zero converges to Euclidean space. [Based on joint work with Allen, Allen-Sormani and Cabrera Pacheco-Katterer].


Dans la même collection

Sur le même thème