Conférence

M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem

Réalisation : 1 juillet 2021 Mise en ligne : 1 juillet 2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

The study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in particular the idea to use surfaces of prescribed mean curvature (as opposed to minimal surfaces). Having the classic positive mass theorem of Schoen-Yau in mind, we describe a new positive mass theorem for manifolds that allows for possibly non asymptotically flat ends, points of incompleteness, and regions negative scalar curvature. The proof is based on surfaces with prescribed mean curvature, and gives an alternative proof of the Liouville theorem conjectured by Schoen-Yau, which was recently proved by Chodosh-Li. This is joint with R.Unger and S-T. Yau.

Intervenants
Thèmes
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation), Hugo BÉCHET (Réalisation)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource:
I_Fourier. (2021, 1 juillet). M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem. [Vidéo]. Canal-U. https://www.canal-u.tv/107573. (Consultée le 21 mai 2022)
Contacter
Documentation

Dans la même collection

Sur le même thème