2019

évènement
Mise en ligne : 05 juillet 2019
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
  • document 1 document 2 document 3
H. Guenancia - A decomposition theorem for singular spaces with trivial canonical class (Part 2)

Vidéos

C. Spicer - Minimal models of foliations
Conférence
00:58:25
C. Spicer - Minimal models of foliations
Spicer
Calum

We will discuss some recent work on the minimal model program (MMP) for foliations and explain some applications of the MMP to the study of foliation singularities and to the study of some

L. Meersseman - Kuranishi and Teichmüller
Conférence
01:01:34
L. Meersseman - Kuranishi and Teichmüller
Meersseman
Laurent

Let X be a compact complex manifold. The Kuranishi space of X is an analytic space which encodes every small deformation of X. The Teichmüller space is a topological space formed by the classes

B. Deroin - The Jouanolou foliation
Conférence
00:59:35
B. Deroin - The Jouanolou foliation
Deroin
Bertrand

I will discuss dynamical properties of the Jouanolou foliation of the complex projective plane in degree two. Joint work with Aurélien Alvarez.

E. Amerik - On the characteristic foliation
Conférence
00:57:48
E. Amerik - On the characteristic foliation
Amerik
Ekaterina

Let X be a holomorphic symplectic manifold and D a smooth hypersurface in X. Then the restriction of the symplectic form on D has one-dimensional kernel at each point. This distribution is

H. Reis - Introduction to holomorphic foliations (Part 4)
Conférence
01:34:34
H. Reis - Introduction to holomorphic foliations (Part 4)
Reis
Helena

The purpose of this course is to present the basics of the general theory of (singular) holomorphic foliations. We will begin with the general definition of a (regular) foliation and its

H. Reis - Introduction to holomorphic foliations (Part 3)
Conférence
01:38:50
H. Reis - Introduction to holomorphic foliations (Part 3)
Reis
Helena

The purpose of this course is to present the basics of the general theory of (singular) holomorphic foliations. We will begin with the general definition of a (regular) foliation and its

H. Reis - Introduction to holomorphic foliations (Part 2)
Conférence
01:02:16
H. Reis - Introduction to holomorphic foliations (Part 2)
Reis
Helena

The purpose of this course is to present the basics of the general theory of (singular) holomorphic foliations. We will begin with the general definition of a (regular) foliation and its

H. Reis - Introduction to holomorphic foliations (Part 1)
Conférence
01:02:15
H. Reis - Introduction to holomorphic foliations (Part 1)
Reis
Helena

The purpose of this course is to present the basics of the general theory of (singular) holomorphic foliations. We will begin with the general definition of a (regular) foliation and its

C. Araujo - Foliations and birational geometry (Part 4)
Conférence
01:20:37
C. Araujo - Foliations and birational geometry (Part 4)
Araujo
Carolina

In the last few decades, much progress has been made in birational algebraic geometry. The general viewpoint is that complex projective manifolds should be classified according to the behavior

C. Araujo - Foliations and birational geometry (Part 3)
Conférence
01:03:20
C. Araujo - Foliations and birational geometry (Part 3)
Araujo
Carolina

In the last few decades, much progress has been made in birational algebraic geometry. The general viewpoint is that complex projective manifolds should be classified according to the behavior

C. Araujo - Foliations and birational geometry (Part 2)
Conférence
01:20:32
C. Araujo - Foliations and birational geometry (Part 2)
Araujo
Carolina

In the last few decades, much progress has been made in birational algebraic geometry. The general viewpoint is that complex projective manifolds should be classified according to the behavior

C. Araujo - Foliations and birational geometry (Part 1)
Conférence
01:06:26
C. Araujo - Foliations and birational geometry (Part 1)
Araujo
Carolina

In the last few decades, much progress has been made in birational algebraic geometry. The general viewpoint is that complex projective manifolds should be classified according to the behavior

Intervenants

XX
Titulaire d'un doctorat de l'Université Joseph Fourier de Grenoble, spécialité "Mathématiques"

Mathématicien. Professeur, Université Nice Sophia-Antipolis (en 2018). Professeur des universités, laboratoire J. A. Dieudonné, Université Côte d'Azur (en 2021)

France
Mathématicien. - Ancien élève de l'École Normale Supérieure de Paris. - Auteur d'une thèse de 3e cycle à l'université de Paris 6 en 1978 et d'une thèse de doctorat d'État de mathématiques à Paris 6 en 1982. - Professeur de mathématiques pures à l'université de Grenoble 1 (1987-2013-). - Membre de jurys de thèses ou directeur de thèses