Notice
S. Diverio - Kobayashi hyperbolicity of complex projective manifolds and foliations (part 1)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
The aim of this mini course is to highlight some links between the study of the Kobayashi hyperbolicity properties of complex projective manifolds and holomorphic foliations.
A compact complex space is Kobayashi hyperbolic if and only if every holomorphic map from the complex plane to it is constant. Projective (or more generally compact Kähler) Kobayashi hyperbolic manifolds share many features with projective manifolds of general type, and it is nowadays a classical and important conjecture (due to S. Lang) that a complex projective manifold should be hyperbolic if and only if it is of general type together with all of its subvarieties.
One essential tool in this business (introduced by Green-Griffiths, and later refined by Demailly) are the so-called (invariant) jet differentials: they are algebraic differential equations which every holomorphic image of the complex plane must satisfy, provided they are with values in an anti-ample divisor. The abundance of such jet differentials provide then a strong constraint to the existence of non constant holomorphic map from the complex plane.
In this series of lectures we shall first of all introduce the basic notions and facts about Kobayashi hyperbolicity, explain what jet differentials are, and how to use them. Next, we shall describe a series of counterexamples built using holomorphic foliations in an essential way, which explain why jet differentials are not enough to obtain results on hyperbolicity of projective manifolds in full generality (even if lots of spectacular results have been obtained in the last decades in special cases). Last, if time permits, we shall overview (in a toy case) McQuillan’s celebrated proof of the the fact the a projective surface of general type with positive second Segre number is "almost" hyperbolic: again this is a combination of jet differentials and holomorphic foliations.
Thème
Documentation
Dans la même collection
-
H. Guenancia - A decomposition theorem for singular spaces with trivial canonical class (Part 2)
GuenanciaHenriThe Beauville-Bogomolov decomposition theorem asserts that any compact Kähler manifold with numerically trivial canonical bundle admits an étale cover that decomposes into a product of a torus, an
-
F. Touzet - About the analytic classification of two dimensional neighborhoods of elliptic curves
TouzetFrédéricI will investigate the analytic classification of two dimensional neighborhoods of an elliptic curve C with trivial normal bundle and discuss the existence of foliations having C as a leaf. Joint work
-
A. Höring - A decomposition theorem for singular spaces with trivial canonical class (Part 3)
HöringAndreasThe Beauville-Bogomolov decomposition theorem asserts that any compact Kähler manifold with numerically trivial canonical bundle admits an étale cover that decomposes into a product of a torus, an
-
C. Spicer - Minimal models of foliations
SpicerCalumWe will discuss some recent work on the minimal model program (MMP) for foliations and explain some applications of the MMP to the study of foliation singularities and to the study of some
-
S. Druel - A decomposition theorem for singular spaces with trivial canonical class (Part 5)
DruelStéphaneThe Beauville-Bogomolov decomposition theorem asserts that any compact Kähler manifold with numerically trivial canonical bundle admits an étale cover that decomposes into a product of a torus, an
-
D. Novikov - Wilkie's conjecture for restricted elementary functions
NovikovDmitriĭ AleksandrovichWe consider the structure $\mathbb{R}^{RE}$ obtained from $(\mathbb{R},
-
B. Deroin - The Jouanolou foliation
DeroinBertrandI will discuss dynamical properties of the Jouanolou foliation of the complex projective plane in degree two. Joint work with Aurélien Alvarez.
-
A. Belotto da Silva - Singular foliations in sub-Riemannian geometry and the Strong Sard Conjecture
Belotto Da SilvaAndré RicardoGiven a totally nonholonomic distribution of rank two $\Delta$ on a three-dimensional manifold $M$, it is natural to investigate the size of the set of points $\mathcal{X}^x$ that can be reached
-
L. Meersseman - Kuranishi and Teichmüller
MeerssemanLaurentLet X be a compact complex manifold. The Kuranishi space of X is an analytic space which encodes every small deformation of X. The Teichmüller space is a topological space formed by the classes
-
J. Demailly - Existence of logarithmic and orbifold jet differentials
DemaillyJean-PierreGiven a projective algebraic orbifold, one can define associated logarithmic and orbifold jet bundles. These bundles describe the algebraic differential operators that act on germs of curves
-
E. Amerik - On the characteristic foliation
AmerikEkaterinaLet X be a holomorphic symplectic manifold and D a smooth hypersurface in X. Then the restriction of the symplectic form on D has one-dimensional kernel at each point. This distribution is
-
S. Ghazouani - Isoholonomic foliations of moduli spaces of Riemann surfaces
GhazouaniSelimIn this talk, I will introduce families of foliations on the moduli space of Riemann surfaces M_{g,n} which we call Veech foliations. These foliations are defined by identifying M_{g,n} to
Avec les mêmes intervenants et intervenantes
-
S. Diverio - Kobayashi hyperbolicity of complex projective manifolds and foliations (Part 4)
DiverioSimoneThe aim of this mini course is to highlight some links between the study of the Kobayashi hyperbolicity properties of complex projective manifolds and holomorphic foliations. A compact
-
S. Diverio - Kobayashi hyperbolicity of complex projective manifolds and foliations (Part 2)
DiverioSimoneThe aim of this mini course is to highlight some links between the study of the Kobayashi hyperbolicity properties of complex projective manifolds and holomorphic foliations. A compact
-
S. Diverio - Kobayashi hyperbolicity of complex projective manifolds and foliations (Part 3)
DiverioSimoneThe aim of this mini course is to highlight some links between the study of the Kobayashi hyperbolicity properties of complex projective manifolds and holomorphic foliations. A compact
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
LiChaoIn this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LaiYiWe find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
T. Ozuch - Noncollapsed degeneration and desingularization of Einstein 4-manifolds
OzuchTristanWe study the noncollapsed singularity formation of Einstein 4-manifolds. We prove that any smooth Einstein 4-manifold close to a singular one in a mere Gromov-Hausdorff (GH) sense is the result
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition
TewodroseDavidPresentation of a joint work with G. Carron and I. Mondello where we study Kato limit spaces.
-
A. Mondino - Time-like Ricci curvature bounds via optimal transport
MondinoAndreaThe goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LesourdMartinThe study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
J. Wang - Topological rigidity and positive scalar curvature
WangJianIn this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PeralesRaquelThéorèmes récents de convergence plane intrinsèque
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FineJoëlI will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space