Conférence

S. Kebekus - Varieties with vanishing first Chern class

Réalisation : 8 juin 2017 Mise en ligne : 8 juin 2017
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

We investigate the holonomy group of singular Kähler-Einstein metrics on klt varieties with numerically trivial canonical divisor. Finiteness of the number of connected components, a Bochner principle for holomorphic tensors, and a connection between irreductibility of holonomy representations and stability of the tangent sheaf are established. As a consequence, we show that up to finite quasi-étale covers, varieties with strongly stable tangent sheaf are either Calabi-Yau (CY) or irreducible holomorphic symplectic (IHS). Finally, finiteness properties of fundamental groups of CY and IHS varieties are established.

Langue :
Anglais
Crédits
Jérémy MAGNIEN (Réalisation)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource:
I_Fourier. (2017, 8 juin). S. Kebekus - Varieties with vanishing first Chern class. [Vidéo]. Canal-U. https://www.canal-u.tv/69125. (Consultée le 25 janvier 2022)
Contacter

Sur le même thème