Conférence

A. Mondino - Time-like Ricci curvature bounds via optimal transport

Durée : 01:14:44 -Réalisation : 30 juin 2021 -Mise en ligne : 30 juin 2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

The goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the celebrated Lott-Sturm-Villani theory of CD(K,N) metric measure spaces. The key idea being to analyse convexity properties of Entropy functionals along future directed timelike geodesics (with respect to a suitable Lorentzian Wasserstein distance) of probability measures. The smooth Lorentzian setting was previously investigated by McCann and Mondino-Suhr. After recalling the general setting of Lorentzian synthetic spaces (including remarkable examples fitting the framework), I will discuss some basics of optimal transport theory thereof in order to define "timelike Ricci curvature bounded below and dimension bounded above''  for a (possibly non-smooth)  Lorentzian space. The notion of  "timelike Ricci curvature bounded below and dimension bounded above''  for a (possibly non-smooth)  Lorentzian space is stable under a suitable weak convergence of Lorentzian synthetic spaces, giving a glimpse on the strength of the proposed approach. As an application of the optimal transport approach to timelike Ricci curvature lower bounds, I will discuss an extension of the  Hawking's Singularity Theorem (in sharp form) to the synthetic setting.

Intervenant
Thème
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation), Hugo BÉCHET (Réalisation), Andrea Mondino (Intervenant)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource :
Andrea Mondino. I_Fourier. (2021, 30 juin). A. Mondino - Time-like Ricci curvature bounds via optimal transport. [Vidéo]. Canal-U. https://www.canal-u.tv/107567. (Consultée le 10 juin 2023)
Contacter
Documentation

Dans la même collection

Avec les mêmes intervenants

Sur le même thème