Conférence
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation), Hugo BÉCHET (Réalisation), Andrea Mondino (Intervention)
Conditions d'utilisation
CC BY-NC-ND 4.0
DOI : 10.60527/8mat-bz09
Citer cette ressource :
Andrea Mondino. I_Fourier. (2021, 30 juin). A. Mondino - Time-like Ricci curvature bounds via optimal transport , in 2021. [Vidéo]. Canal-U. https://doi.org/10.60527/8mat-bz09. (Consultée le 17 septembre 2024)

A. Mondino - Time-like Ricci curvature bounds via optimal transport

Réalisation : 30 juin 2021 - Mise en ligne : 30 août 2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

The goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the celebrated Lott-Sturm-Villani theory of CD(K,N) metric measure spaces. The key idea being to analyse convexity properties of Entropy functionals along future directed timelike geodesics (with respect to a suitable Lorentzian Wasserstein distance) of probability measures. The smooth Lorentzian setting was previously investigated by McCann and Mondino-Suhr. After recalling the general setting of Lorentzian synthetic spaces (including remarkable examples fitting the framework), I will discuss some basics of optimal transport theory thereof in order to define "timelike Ricci curvature bounded below and dimension bounded above''  for a (possibly non-smooth)  Lorentzian space. The notion of  "timelike Ricci curvature bounded below and dimension bounded above''  for a (possibly non-smooth)  Lorentzian space is stable under a suitable weak convergence of Lorentzian synthetic spaces, giving a glimpse on the strength of the proposed approach. As an application of the optimal transport approach to timelike Ricci curvature lower bounds, I will discuss an extension of the  Hawking's Singularity Theorem (in sharp form) to the synthetic setting.

Intervention

Dans la même collection

Avec les mêmes intervenants et intervenantes

Sur le même thème