V. Tosatti - $C^{1,1}$ estimates for complex Monge-Ampère equations

Réalisation : 7 juin 2017 Mise en ligne : 7 juin 2017
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3

I will discuss a method that we recently introduced in collaboration with Chu and Weinkove which gives interior C1,1 estimates for the non-degenerate complex Monge-Ampère equation on compact Kähler manifolds (possibly with boundary). The method is sufficiently robust to also give C1,1 regularity of geodesic segments in the space of Kähler metrics (thus resolving a long-standing problem originating from the work of Chen), of quasi-psh envelopes in Kähler as well as nef and big classes (solving a conjecture of Berman), and of geodesic rays that arise from test configurations (improving results of Phong and Sturm), and it even applies to the almost-complex case.

Langue :
Annie MAGNAN (Réalisation)
Conditions d'utilisation
Droit commun de la propriété intellectuelle
Citer cette ressource:
I_Fourier. (2017, 7 juin). V. Tosatti - $C^{1,1}$ estimates for complex Monge-Ampère equations. [Vidéo]. Canal-U. (Consultée le 25 janvier 2022)

Sur le même thème