Vidéo pédagogique
Notice
Lieu de réalisation
Grenoble
Sous-titrage
Sous-titre
Langue :
Anglais
Crédits
François Rechenmann (Intervention)
Conditions d'utilisation
Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’œuvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’œuvre originale.
DOI : 10.60527/ng4z-rr29
Citer cette ressource :
François Rechenmann. Inria. (2015, 5 février). 5.5. Differences are not always what they look like , in 5. Phylogenetic trees. [Vidéo]. Canal-U. https://doi.org/10.60527/ng4z-rr29. (Consultée le 15 août 2024)

# 5.5. Differences are not always what they look like

Réalisation : 5 février 2015 - Mise en ligne : 9 mai 2017
• document 1 document 2 document 3
• niveau 1 niveau 2 niveau 3
Descriptif

The algorithm we have presented works on an array of distance between sequences. These distances are evaluated on the basis of differences between the sequences. The problem is that behind the differences we observed on the set of sequences, there may beother mutations which cannot be observed and we should modify the distances. We will have a look at some simple cases of these observed differences which may correspond to hidden differences and then we will see how the evaluation, computationof the number of differences may be affected. The simple case is this one, aunique substitution between, in the sequence One we have a Cand it turns out that in the sequence Two, there is a mutation, C becomes A. So what we observed is one mutation and the actual substitution is also one. Let's look, here we have two sequencesand here we have a mutation. OK. One difference, one mutation so in that case it's correct. A first case in which there is a discrepancy between the substitutions, number of substitutions beingobserved and the number of actual substitutions is in the case of multiple substitutions. In the first sequence there isan A, it's OK, in the second sequence the A mutates in C andthen in T so what we will see is only one difference, one substitution when there is actually two.

Intervention
Thème
Documentation

## Dans la même collection

• Vidéo pédagogique
00:04:49

### 5.3. Building an array of distances

Rechenmann
François

So using the sequences of homologous gene between several species, our aim is to reconstruct phylogenetic tree of the corresponding species. For this, we have to comparesequences and compute distances

• Vidéo pédagogique
00:07:25

### 5.7. The application domains in microbiology

Rechenmann
François

Bioinformatics relies on many domains of mathematics and computer science. Of course, algorithms themselves on character strings are important in bioinformatics, we have seen them. Algorithms and

• Vidéo pédagogique
00:05:16

### 5.1. The tree of life

Rechenmann
François

Welcome to this fifth and last week of our course on genomes and algorithms that is the computer analysis of genetic information. During this week, we will firstsee what phylogenetic trees are and how

• Vidéo pédagogique
00:04:59

### 5.4. The UPGMA algorithm

Rechenmann
François

We know how to fill an array with the values of the distances between sequences, pairs of sequences which are available in the file. This array of distances will be the input of our algorithm for

• Vidéo pédagogique
00:04:45

### 5.2. The tree, an abstract object

Rechenmann
François

When we speak of trees, of species,of phylogenetic trees, of course, it's a metaphoric view of a real tree. Our trees are abstract objects. Here is a tree and the different components of this tree.

• Vidéo pédagogique
00:08:29

### 5.6. The diversity of bioinformatics algorithms

Rechenmann
François

In this course, we have seen a very little set of bioinformatic algorithms. There exist numerous various algorithms in bioinformatics which deal with a large span of classes of problems. For example,

## Avec les mêmes intervenants et intervenantes

• Vidéo pédagogique
00:05:10

### 1.5. Counting nucleotides

Rechenmann
François

In this session, don't panic. We will design our first algorithm. This algorithm is forcounting nucleotides. The idea here is that as an input,you have a sequence of nucleotides, of bases, of letters,

• Vidéo pédagogique
00:06:09

### 2.4. A translation algorithm

Rechenmann
François

We have seen that the genetic codeis a correspondence between the DNA or RNA sequences and aminoacid sequences that is proteins. Our aim here is to design atranslation algorithm, we make the

• Vidéo pédagogique
00:05:41

### 3.1. All genes end on a stop codon

Rechenmann
François

Last week we studied genes and proteins and so how genes, portions of DNA, are translated into proteins. We also saw the very fast evolutionof the sequencing technology which allows for producing

• Vidéo pédagogique
00:05:35

### 3.9. Benchmarking the prediction methods

Rechenmann
François

It is necessary to underline that gene predictors produce predictions. Predictions mean that you have no guarantees that the coding sequences, the coding regions,the genes you get when applying your

• Vidéo pédagogique
00:04:29

### 4.2. Why gene/protein sequences may be similar?

Rechenmann
François

Before measuring the similaritybetween the sequences, it's interesting to answer the question: why gene or protein sequences may be similar? It is indeed veryinteresting because the answer is related

• Vidéo pédagogique
00:08:29

### 5.6. The diversity of bioinformatics algorithms

Rechenmann
François

In this course, we have seen a very little set of bioinformatic algorithms. There exist numerous various algorithms in bioinformatics which deal with a large span of classes of problems. For example,

• Vidéo pédagogique
00:06:24

### 1.8. Compressing the DNA walk

Rechenmann
François

We have written the algorithm for the circle DNA walk. Just a precision here: the kind of drawing we get has nothing to do with the physical drawing of the DNA molecule. It is a symbolic

• Vidéo pédagogique
00:06:57

### 2.7. The algorithm design trade-off

Rechenmann
François

We saw how to increase the efficiencyof our algorithm through the introduction of a data structure. Now let's see if we can do even better. We had a table of index and weexplain how the use of these

• Vidéo pédagogique
00:06:22

### 3.4. Predicting all the genes in a sequence

Rechenmann
François

We have written an algorithm whichis able to locate potential genes on a sequence but only on one phase because we are looking triplets after triplets. Now remember that the genes maybe located on

• Vidéo pédagogique
00:06:38

### 4.7. Alignment costs

Rechenmann
François

We have seen how we can compute the cost of the path ending on the last node of our grid if we know the cost of the sub-path ending on the three adjacent nodes. It is time now to see more deeply why

• Vidéo pédagogique
00:06:58

### 4.9. Recursion can be avoided: an iterative version

Rechenmann
François

We have written a recursive function to compute the optimal path that is an optimal alignment between two sequences. Here all the examples I gave were onDNA sequences, four letter alphabet. OK. The

• Vidéo pédagogique
00:07:21

### 1.3. DNA codes for genetic information

Rechenmann
François

Remember at the heart of any cell,there is this very long molecule which is called a macromolecule for this reason, which is the DNA molecule. Now we will see that DNA molecules support what is called