Vidéo pédagogique
Notice
Lieu de réalisation
Grenoble
Sous-titrage
Sous-titre
Langue :
Anglais
Crédits
François Rechenmann (Intervention)
Conditions d'utilisation
Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’œuvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’œuvre originale.
DOI : 10.60527/s7vh-3n27
Citer cette ressource :
François Rechenmann. Inria. (2015, 5 février). 5.6. The diversity of bioinformatics algorithms , in 5. Phylogenetic trees. [Vidéo]. Canal-U. https://doi.org/10.60527/s7vh-3n27. (Consultée le 25 juillet 2024)

5.6. The diversity of bioinformatics algorithms

Réalisation : 5 février 2015 - Mise en ligne : 9 mai 2017
• document 1 document 2 document 3
• niveau 1 niveau 2 niveau 3
Descriptif

In this course, we have seen a very little set of bioinformatic algorithms. There exist numerous various algorithms in bioinformatics which deal with a large span of classes of problems. For example, read assembly. We have seen how NGS sequencers produce large sets of reads, small sequences which overlap. And the problem of assembly isto use the overlap in order to ordering this read and reconstructing the whole genomic sequence. This is the overlapping and you see that you can use this overlap to get a longer sequence. Of course, here the example issimple: you have to imagine a set of millions of reads to beassembled into genomic sequences of millions or billions of bases. A second class of problems issequence mapping and comparison. We have seen sequence comparison. What about sequence mapping? You remember this situation in which biologists get what they call "cDNA". Experimentally, this is a sequence of DNA and they want to map this sequence of DNA on the sequence of the genome in order to say: well, this is an exon, this i an exon and so on.

Intervention
Thème
Documentation

Dans la même collection

• Vidéo pédagogique
00:07:25

5.7. The application domains in microbiology

Rechenmann
François

Bioinformatics relies on many domains of mathematics and computer science. Of course, algorithms themselves on character strings are important in bioinformatics, we have seen them. Algorithms and

• Vidéo pédagogique
00:05:16

5.1. The tree of life

Rechenmann
François

Welcome to this fifth and last week of our course on genomes and algorithms that is the computer analysis of genetic information. During this week, we will firstsee what phylogenetic trees are and how

• Vidéo pédagogique
00:04:59

5.4. The UPGMA algorithm

Rechenmann
François

We know how to fill an array with the values of the distances between sequences, pairs of sequences which are available in the file. This array of distances will be the input of our algorithm for

• Vidéo pédagogique
00:04:45

5.2. The tree, an abstract object

Rechenmann
François

When we speak of trees, of species,of phylogenetic trees, of course, it's a metaphoric view of a real tree. Our trees are abstract objects. Here is a tree and the different components of this tree.

• Vidéo pédagogique
00:07:39

5.5. Differences are not always what they look like

Rechenmann
François

The algorithm we have presented works on an array of distance between sequences. These distances are evaluated on the basis of differences between the sequences. The problem is that behind the

• Vidéo pédagogique
00:04:49

5.3. Building an array of distances

Rechenmann
François

So using the sequences of homologous gene between several species, our aim is to reconstruct phylogenetic tree of the corresponding species. For this, we have to comparesequences and compute distances

Avec les mêmes intervenants et intervenantes

• Vidéo pédagogique
00:07:21

1.3. DNA codes for genetic information

Rechenmann
François

Remember at the heart of any cell,there is this very long molecule which is called a macromolecule for this reason, which is the DNA molecule. Now we will see that DNA molecules support what is called

• Vidéo pédagogique
00:05:41

2.1. The sequence as a model of DNA

Rechenmann
François

Welcome back to our course on genomes and algorithms that is a computer analysis ofgenetic information. Last week we introduced the very basic concept in biology that is cell, DNA, genome, genes

• Vidéo pédagogique
00:04:54

2.9. Whole genome sequencing

Rechenmann
François

Sequencing is anexponential technology. The progresses in this technologyallow now to a sequence whole genome, complete genome. What does it mean? Well let'stake two examples: some twenty years ago,

• Vidéo pédagogique
00:07:06

3.7. Index and suffix trees

Rechenmann
François

We have seen with the Boyer-Moore algorithm how we can increase the efficiency of spin searching through the pre-processing of the pattern to be searched. Now we will see that an alternative way of

• Vidéo pédagogique
00:04:22

4.4. Aligning sequences is an optimization problem

Rechenmann
François

We have seen a nice and a quitesimple solution for measuring the similarity between two sequences. It relied on the so-called hammingdistance that is counting the number of differencesbetween two

• Vidéo pédagogique
00:04:45

5.2. The tree, an abstract object

Rechenmann
François

When we speak of trees, of species,of phylogenetic trees, of course, it's a metaphoric view of a real tree. Our trees are abstract objects. Here is a tree and the different components of this tree.

• Vidéo pédagogique
00:04:28

1.6. GC and AT contents of DNA sequence

Rechenmann
François

We have designed our first algorithmfor counting nucleotides. Remember, what we have writtenin pseudo code is first declaration of variables. We have several integer variables that are variables which

• Vidéo pédagogique
00:05:50

2.5. Implementing the genetic code

Rechenmann
François

Remember we were designing our translation algorithm and since we are a bit lazy, we decided to make the hypothesis that there was the adequate function forimplementing the genetic code. It's now time

• Vidéo pédagogique
00:05:13

3.2. A simple algorithm for gene prediction

Rechenmann
François

Based on the principle we statedin the last session, we will now write in pseudo code a firstalgorithm for locating genes on a bacterial genome. Remember first how this algorithm should work, we first

• Vidéo pédagogique
00:08:56

3.10. Gene prediction in eukaryotic genomes

Rechenmann
François

If it is possible to have verygood predictions for bacterial genes, it's certainly not the caseyet for eukaryotic genomes. Eukaryotic cells have manydifferences in comparison to prokaryotic cells. You

• Vidéo pédagogique
00:07:41

4.8. A recursive algorithm

Rechenmann
François

We have seen how we can computethe optimal cost, the ending node of our grid if we know the optimal cost of the three adjacent nodes. This is this computation scheme we can see here using the notation

• Vidéo pédagogique
00:07:25

5.7. The application domains in microbiology

Rechenmann
François

Bioinformatics relies on many domains of mathematics and computer science. Of course, algorithms themselves on character strings are important in bioinformatics, we have seen them. Algorithms and