Notice
Reasoning over large-scale biological systems with heterogeneous and incomplete data
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
Data produced by the domain of life sciences in the next decade are expected to be highly challenging. In addition to scalability issues which are shared with other applications domains, data produced in life sciences have very specific characteristics: multi-scale, incomplete, heterogeneous but somehow interdependent. This makes data-mining methods less efficient than expected to assist knowledge discovery. An example of such limitations is the study of biological systems in molecular and cellular biology, which cannot be uniquely identified with the data at hand.In this talk, we will introduce a strategy to study biological systems in the framework of incomplete data.
This strategy relies on reasoning and logical programming technics, allowing to model interactions within a system, take into account information carried by the overapproximated dynamics of the system, and finally extract relevant properties by solving combinatorial problems. We will illustrate this approach on the emerging field of systems ecology which aims at understanding interactions between a consortium of microbes and a host organism.
Thème
Documentation
Documents pédagogiques
Sur le même thème
-
Le projet dnarXiv : Stockage de données sur des molécules d'ADN
LavenierDominiqueDuprazElsaLeblancJulienCoatrieuxGouenouDominique Lavenier, Elsa Dupraz, Julien Leblanc et Gouenou Coatrieux nous présentent le projet dnarXiv, un projet porté par le LabEx CominLabs qui explore le stockage de données sur des molécules d
-
21 Molecular Algorithms Using Reprogrammable DNA Self-Assembly
WoodsDamienThe history of computing tells us that computers can be made of almost anything: silicon, gears and levers, neurons, flowing water, interacting particles or even light. Although lithographically
-
Des métiers de la bio-informatique
Courtes vidéos pour sensibiliser le jeune public aux débouchés/métiers de la filière numérique et pour promouvoir les sciences du numérique, plus globalement les carrières scientifiques.L'objectif est
-
Biological Networks Entropies: examples in neural, genetic and social networks
DemongeotJacquesThe networks used in biological applications at different scales (molecular, cellular and populational) are of different types, genetic, neuronal, and social, but they share the same dynamical
-
Génomique et informatique
RislerJean-LoupLa presse généraliste, et bien entendu la presse spécialisée, se font régulièrement l'écho du séquençage complet d'un nouveau génome. Il est cependant impossible pour le grand public de se rendre
-
Apport de l'informatique à la génomique des cancers
ViariAlainLa plupart des gènes de notre génome sont présents en deux copies (une sur chaque chromosome homologue). Dans un génome tumoral, en revanche, il est fréquent d'observer soit des pertes soit, au
-
2.8. Les technologies de séquençage de l’ADN
RechenmannFrançoisParmentelatThierryNous parlons beaucoup dans ce cours de séquences génomiques ou séquences d'ADN, que nous voyons pour des raisons algorithmiques sous forme de chaînes de caractères. Comment ces séquences, ces chaînes
-
3.3. À la recherche des codons start et stop
RechenmannFrançoisParmentelatThierryNous avons écrit la structure, l'ossature d'un algorithme de prédiction de gènes dans un génome bactérien, en utilisant les principes que nous avions énoncés précédemment. Cet algorithme est incomplet
-
5.7. Les applications en microbiologie
RechenmannFrançoisParmentelatThierryUne très grande diversité, on l'a vu, d'algorithmes en bio-informatique, motivé par la résolution de problèmes différents. Ces algorithmes, ces recherches en bio-informatique, s'appuient sur des
-
5.5. Quand les différences sont trompeuses
RechenmannFrançoisParmentelatThierryIl y a plusieurs raisons pour lesquelles la méthode UPGMA, que nous venons de voir, se révèle simpliste. L'une des raisons par exemple, c'est pourquoi quand on recalcule les distances, quand on a
-
1.2. Au cœur de la cellule, la molécule d’ADN
RechenmannFrançoisParmentelatThierryAu cœur de chaque cellule se trouve donc la molécule d'ADN, flottant directement dans le cytoplasme dans le cas des cellules procaryotes, par exemple bactériennes, ou contenue dans le noyau des
-
2.1. La séquence est-elle un bon modèle de l’ADN ?
RechenmannFrançoisParmentelatThierryL'ADN porte l'information génétique, plus précisément l'ADN porte les gènes, c'est-à-dire les régions de cette molécule qui portent l'information utilisée par la cellule pour synthétiser les protéines