Conférence
Notice
Lieu de réalisation
Sophia Antipolis
Langue :
Anglais
Crédits
CNRS - Centre National de la Recherche Scientifique (Publication), INRIA (Institut national de recherche en informatique et automatique) (Production), INRIA (Institut national de recherche en informatique et automatique) (Publication), UNS (Publication), Anne Siegel (Intervention)
Conditions d'utilisation
Droit commun de la propriété intellectuelle
DOI : 10.60527/zkvb-aw29
Citer cette ressource :
Anne Siegel. Inria. (2019, 7 février). Reasoning over large-scale biological systems with heterogeneous and incomplete data. [Vidéo]. Canal-U. https://doi.org/10.60527/zkvb-aw29. (Consultée le 22 juin 2024)

Reasoning over large-scale biological systems with heterogeneous and incomplete data

Réalisation : 7 février 2019 - Mise en ligne : 8 février 2019
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
Descriptif

Data produced by the domain of life sciences in the next decade are expected to be highly challenging. In addition to scalability issues which are shared with other applications domains, data produced in life sciences have very specific characteristics: multi-scale, incomplete, heterogeneous but somehow interdependent. This makes data-mining methods less efficient than expected to assist knowledge discovery. An example of such limitations is the study of biological systems in molecular and cellular biology, which cannot be uniquely identified with the data at hand.In this talk, we will introduce a strategy to study biological systems in the framework of incomplete data.This strategy relies on reasoning and logical programming technics, allowing to model interactions within a system, take into account information carried by the overapproximated dynamics of the system, and finally extract relevant properties by solving combinatorial problems. We will illustrate this approach on the emerging field of systems ecology which aims at understanding interactions between a consortium of microbes and a host organism.

Intervention

Sur le même thème