-
- Date de réalisation : 26 Juin 2018
- Durée du programme : 64 min
- Classification Dewey : Mathématiques
-
- Catégorie : Conférences
- Niveau : niveau Doctorat (LMD), Recherche
- Disciplines : Mathématiques
- Collections : Ecoles d'été, 2018
- ficheLom : Voir la fiche LOM
-
- Auteur(s) : Wright Alex
- Réalisateur(s) : Girard Yohan
-
- Langue : Anglais
- Mots-clés : Grenoble, eem2018, Teichmüller dynamics mapping class groups and applications, surface subgroups, covolume Kleinian groups
- Conditions d’utilisation / Copyright : CC BY-NC-ND 4.0
Dans la même collection
























A. Wright - Nearly Fuchsian surface subgroups of finite covolume Kleinian groups
Multicurves have played a fundamental role in the study of mapping class groups of surfaces since the work of Dehn. A beautiful method of describing such systems on the n-punctured disk is given by the Dynnikov coordinate system. In this talk we describe polynomial time algorithms for calculating the number of connected components of a multi curve, and the geometric intersection number of two multicurves on the n-punctured disk, taking as input their Dynnikov coordinates. This is joint work
commentaires
Ajouter un commentaire Lire les commentaires