Conférence

D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition

Durée : 01:07:59 -Réalisation : 2 juillet 2021 -Mise en ligne : 2 juillet 2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Descriptif

I will present a joint work with G. Carron and I. Mondello where we study Kato limit spaces. These are metric measure spaces obtained as Gromov-Hausdorff limits of smooth n-dimensional Riemannian manifolds with Ricci curvature satisfying a uniform Kato-type condition. In this context, strictly wider than the ones of Ricci limit spaces (where the Ricci curvature satisfies a uniform lower bound) and Lp-Ricci limit spaces (where the Ricci curvature is uniformly bounded in Lp for some p>n/2), we extend classical results of Cheeger, Colding and Naber, like the fact that under a non-collapsing assumption, every tangent cone is a metric measure cone. I will present these results and explain how we rely upon a new heat-kernel based almost monotone quantity to derive them.

Intervenant
Thème
Notice
Langue :
Anglais
Crédits
Fanny Bastien (Réalisation), Hugo BÉCHET (Réalisation), David Tewodrose (Intervenant)
Conditions d'utilisation
CC BY-NC-ND 4.0
Citer cette ressource :
David Tewodrose. I_Fourier. (2021, 2 juillet). D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition. [Vidéo]. Canal-U. https://www.canal-u.tv/107577. (Consultée le 31 mai 2023)
Contacter
Documentation

Dans la même collection

Sur le même thème