Mon compte
Institut Fourier

F. Boarotto - Normal forms around regular abnormal curves in rank-two distributions (Part 2)

Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src=";height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Auteur(s) :
BOAROTTO Francesco

Producteur Canal-U :
Institut Fourier
Contacter le contributeur
partager facebook twitter Google +

F. Boarotto - Normal forms around regular abnormal curves in rank-two distributions (Part 2)

Let (M, ∆) be a rank-two sub-Riemannian structure on a smooth manifold M, and let x, y be any two points on M. In this talk I will present some recent results concerning the description of the set Ω(y), of all the horizontal curves joining x and y, in the vicinity of a rank-two-nice singular curve γ. This is made possible by the existence of a normal form for the endpoint map F locally around γ, and in turn this result permits to discuss some rather surprising isolation properties of γ among extremal curves. If time permits, we will try to discuss some topological properties of rank-two-nice singular curves, establishing in particular their homotopical visibility. This is a joint work with A. Agrachev and A. Lerario.



Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)

Dans la même collection

Facebook Twitter Google+
Mon Compte